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Executive Summary

The mathematical theory of communication introduced by Shannon (1948) describes logarith-
mic measures of information and has stimulated a tremendous amount of study in engineering
fields on the subject of information theory. It is a branch of applied probability and statistics
that is relevant to statistical inference and therefore should be of basic interest to statisticians.
Information theory seeks the quantification of information and the development of coding
schemes that provide good performance in comparison with the optimal performance given
by the theory. The Shannon entropy is one of the most used measures to quantify the infor-
mation of a random variable and is attributed to uncertainty of information or mathematical
contrariety of information. In order to quantify the mutual information between two random
variables, the most used quantity is the mutual information index that provides a generalized
measure of association between both random variables, say X and Y , which is particularly
convenient in those models where the correlation is not defined. Additionally, the Rényi
entropy (Rényi, 1970) corresponds to a generalization of Shannon entropy that provides
some additional mathematical advantages, such as include an α-order for compare two Rényi
entropies. Kullback and Leibler (1951) proposed the Kullback–Leibler (KL) divergence to
compare the information of Y with respect to X , or the disparity of the Y ’s probability density
function (pdf) with respect to X’s pdf. KL divergence is strictly positive and non-symmetrical,
i.e., the order of X and Y affects the information. Also KL divergence is considered a good
indicator of the correlation degree between two finite sets of data, specially if they are
affected by noise produced by the interaction of the system. Other divergences that provides
additional mathematical properties are: Jeffreys divergence (symmetrical with respect to X
and Y ) and Jensen–Shannon distance (symmetrical and accomplish the triangular inequality).
Focusing in normal distribution, the Negentropy becomes the KL divergence and measures
the departure from the normality of the X’s pdf. The Negentropy is always nonnegative, and
will become even larger as the random variable and is farther from the normality.

Frequently, several authors have been computed information measures for a large list
of univariate and multivariate distributions, beyond the multivariate normal distribution
(Zografos and Nadarajah, 2005). In the last three decades, non-normal distributions have
received substantial interest within scientific literature, especially in regards to skew-elliptical
distributions, a class of flexible distributions characterized for account with skewness and
heavy-tails as an extra parameters respect to elliptical distributions as normal and t (Branco
and Dey, 2001), behind the multivariate skew-normal (SN, Azzalini and Dalla-Valle, 1996)
and multivariate skew-t (ST, Azzalini and Capitanio, 2003) distributions. The family of SN
distributions has been popularized by Azzalini (1985) and ever since it has been discussed
extensively in the literature. Such discussions include a wide variety of skewed models
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in addition to having gaussian distribution as a special case and flexibility in capturing
skewness in the data. In this sense, González-Farías et al. (2004) present the closed SN
(CSN) distribution as an extension of the SN case, but closed under operations such as sums,
marginalization, and linear conditioning. Another generalization of the SN distribution is the
extended SN distribution (ESN, Capitanio et al., 2003) that adds a fourth real parameter to
accommodate both skewness and heavy tails. In some cases where observed variables can be
simultaneously skewed and restricted to a fixed interval, the truncated SN distribution is a
good choice for those applications (Flecher et al., 2010).

In this work, we propose a general and unified theory of the information theory measures
mentioned early for flexible and tractable families of continuous multivariate distributions, in
which the multivariate normal and further well-known symmetric distributions, such as the t,
are particular members. Specifically, we consider the multivariate elliptical, skew-elliptical,
closed SN and generalized SN families of distributions. We give special attention to the
particular cases of the multivariate SN and ST distributions that allow to model skewness. In
particular, we provide the following results.

We have proposed an alternative way to compute the Shannon entropy and mutual
information index for data with skewness and heavy tails. The calculation of this index
produces a similar expression as for the normal and t cases except for a new term represented
by a one dimensional integral that can easily and quickly be computed by standard numerical
methods. Moreover, a numerical study showed the convergence of this integral and in fact
of the SN and ST mutual information indexes. As an application, an analysis of an optimal
network design of a classical pollutant was presented. We conclude from this analysis that
the consideration of skewness and heavy tails in the model to fit the untransformed data
produces different conclusions/decisions than those obtained by applying the normal model
to the transformed data. The correct fit of the original data ensures the optimal maximization
of the mutual information index and determines a better optimization network design.

In addition, we have presented a methodology to compute the KL divergence for multivari-
ate data presenting skewness, specifically, for data following a multivariate SN distribution.
The calculation of this measure is semi-analytical, since it is the sum of two analytical terms,
one corresponding to the multivariate normal KL divergence and the other depending on
the location, dispersion and shape parameters, and a third term which must be computed
numerically and which was reduced from a multidimensional integral to an integral in only
one dimension. Numerical experiments have shown that the performance of this measure
is consistent with its theoretical properties. Additionally, we have derived expressions for
the J divergence between different multivariate SN distributions, and in particular for the J
divergence between the SN and normal distributions. The proposed SN KL divergence is
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applied to aftershocks produced by the Maule earthquake which occurred on February 27
of 2010. The results shown that the proposed measures are useful tools for comparing the
distributions of magnitudes of events related to the regions near the epicenter. We also con-
sider an asymptotic homogeneity test for the cluster distributions under the skew-normality
assumption and, consequently, confirm the founded results in a consistent form. However,
this asymptotic homogeneity test do not satisfy regularity condition when shape parameter is
close to zero, i.e., where the Fisher information matrix is singular. This problem is solved by
considering a modified version of SN distribution, as is describer later. Besides, a measure to
compare two multivariate ST densities is presented based on the approximated KL divergence.
This has some advantages such as: the detection of skewness presence and heavy-tails within
the data; it is of rapid and easy computational implementation, because it is an explicit form
of the divergence where there is an expected value representing an integral in one dimension.

Some solutions to compute the Rényi entropy with discrete α-order and for a wide range
of asymmetric distributions are presented. Specifically, we find a closed expression for
SN, ESN, and TSN distributions. Additional inequalities for SN and ESN entropies were
reported. Lower and upper bounds of the Shannon and Rényi entropies for finite mixtures of
SN (FMSN) distributions were derived. Using such a pair of bounds some kind of confidence
interval for the approximate entropy value can be calculated, where the average between
these values can be used as an approximation of the entropy. We presented practical (bounds)
and theoretical (bounds and asymptotic expression) results for Rényi entropy. In the case
of practical results, the first upper bound deals only with the density parameters and the
second one with the density and mixing weights parameters. In the case of theoretical results,
the bounds and approximations are based on Lp space metric and multinomial coefficients.
The results presented are valid for the SN case, taking the shape parameters set equal zero,
for integer values of α (Contreras-Reyes, 2015). In addition, the proportioned results are
also valid for other continuous densities where the Rényi entropies of the component exist.
We hope the Rényi entropy developments in finite mixtures of densities can stimulate more
research in the future, for more flexible densities such as ST distribution (Azzalini and
Capitanio, 2003). As an application of SN Rényi entropy, we applied 2-dimensional length-
weight data for the determination of swordfish age. We considered a length-weight dataset
instead of the usual length (considered by Roa-Ureta, 2010) to determine the number of
clusters, and posteriorly we compared it with the real observations obtained by the procedure
of Cerna (2009). The best results were obtained using the Rényi entropy, as an average
between upper and lower bounds, over Shannon entropy and information criteria.

Finally, we consider asymptotic expansions of moments and cumulants for the negentropy
of two particular cases: the SN and Modified SN (MSN) distributions. Given that SN
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distribution do not accomplished regularity condition of Fisher information matrix at when
skewness parameter is zero, normality is tested based on the MSN distribution (Arrué et al.,
2016). This allow to implement an asymptotic normality test for testing significance of
skewness parameter. We have presented the methodology to compute the Shannon entropy,
the negentropy, and the KL and J divergences for a broad family of asymmetric distributions
with normal kernel called Generalized SN distributions. Our method considers asymptotic
expansions regarding moments and cumulants for two particular cases: the SN and MSN
distributions. We then measured the degrees of disparity of these distributions from the
normal distribution by using exact expressions for the negentropy in terms of moments and
cumulants. Numerical results showed that the Shannon entropy and negentropy of the MSN
distribution is better approximated than SN one, at least for a wider range of the shape
parameter. For small of the asymmetry parameter, where the approximations are appropriate,
we find that expansions series converge from the fourth moment/cummulant to greater, as
in Gram–Charlier and Edgeworth expansion methods. For large values of the skewness
parameter, where the expansions are inappropriate, the functions related to negentropy are
not well approximated by Taylor expansions around zero, produced by a divergence in the
moment and cummulant terms. When this happens, the normal cumulative density function
tends to 1, since according to the stochastic representation for large values of skewness
parameter, the distribution converges to the standardized half-normal distribution.

We also compared asymptotic test with Likelihood Ratio test and asymptotic normality
test given by Arrué et al. (2016). Given the regularity conditions accomplished by the MSN
distribution, normality was tested based on the modified SN distribution. This test considered
the asymptotic behavior of the KL divergence, which is determined by the negentropy for
normality disparity. However, the normality test considered in the application used skewness
parameters inside the appropriate range. Proposed asymptotic test is applied to condition
factor time series of anchovy. The results show that the proposed methodology serves to
detect non-normal events in these time series, which produces an empirical distribution with
high well presence of skewness. The proposed test for normality is therefore useful to detect
anomalies in condition factor time series, linked to food deficit (positive shape parameter) or
food abundance (negative shape parameter) influenced by environmental conditions.
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Abstract

Spanish Version

El problema de medir la disparidad de una función de densidad de probabilidad con re-
specto a una densidad normal ha sido estudiado en varios estudios recientes. La técnica
más usada para lidiar con este problema ha sido mediante expresiones exactas usando me-
didas de información de ciertas distribuciones. En esta tesis consideramos una clase de
distribuciones asimétricas con un kernel normal, llamada distribuciones normal-sesgadas
generalizadas (GSN). Medimos el grado de disparidad de esas distribuciones con respecto
a la distribución normal usando expresiones exactas de la negentropía GSN en términos
de cumulantes. Específicamente, nos focalizamos en las distribuciones normal-sesgada y
normal-sesgada modificada. Luego, establecemos las divergencias de Kullback–Leibler entre
cada distribución GSN y la normal en términos de sus negentropías para desarrollar un test
de hipótesis de normalidad. Finalmente, aplicamos este resultado a series de tiempo de factor
de condición de anchovetas de la costa del norte de Chile.

English Version

The problem of measuring the disparity of a particular probability density function from a
normal one has been addressed in several recent studies. The most used technique to deal
with the problem has been exact expressions using information measures over particular
distributions. In this thesis, we consider a class of asymmetric distributions with a normal
kernel, called Generalized Skew-Normal (GSN) distributions. We measure the degrees of
disparity of these distributions from the normal distribution by using exact expressions for
the GSN negentropy in terms of cumulants. Specifically, we focus on skew-normal and
modified skew-normal distributions. Then, we establish the Kullback–Leibler divergences
between each GSN distribution and the normal one in terms of their negentropies to develop
hypothesis testing for normality. Finally, we apply this result to condition factor time series
of anchovies off northern Chile.
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Chapter 1

Background of Information theory

The mathematical theory of communication introduced by Shannon (1948) describes log-
arithmic measures of information and has stimulated a tremendous amount of study in
engineering fields on the subject of information theory. It is a branch of applied probability
and statistics that is relevant to statistical inference and therefore should be of basic interest
to statisticians (Kullback, 1978). Information theory seeks the quantification of information.
One goal of information theory is the development of coding schemes that provide good
performance in comparison with the optimal performance given by the theory. It works under
the assumption of a strongly stationary random process in order to define an information
quantity contained in a multivariate probability density function (pdf), for example such as
the multivariate normal distribution (Cover and Thomas, 2006, Kullback, 1978, Silva and
Quiroz, 2003) and the exponential family (Stehlík, 2003). This quantity allows to measure the
cumulative information of a multivariate data set, or more specifically, to quantify the mutual
information between two random variables or vectors. On the other hand, the entropy is a
notion of information provided by a random process about itself and it is sufficient to study
the reproduction of a marginal process through a noiseless environment. For a systematic
and comprehensive account of these and related concepts (see e.g. Cover and Thomas, 2006).

In this chapter, we review a few important basic aspects of information theory.

1.1 Shannon entropy, mutual information and negentropy

Let ZZZ ∈Rk be a random vector with pdf f (zzz). The Shannon entropy -also named differential
entropy-which was proposed earlier by Shannon (1948) is

H(ZZZ) =−E[log f (ZZZ)] =−
∫
Rk

f (zzz)log f (zzz)dzzz, (1.1)
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where E[g(ZZZ)] denote the expected information in ZZZ for a function g(zzz). In this case,
Shannon’s entropy is the expected value of the function g(zzz) =− log f (zzz), which satisfies
g(1) = 0 and g(0) = ∞. We extend this notation in all expected values expressed on this work.
The Shannon entropy is attributed to uncertainty of information or mathematical contrariety
of information, see Cover and Thomas (2006) for additional properties.

Lemma 1. Let f (zzz) = |Ω|−1/2 f{Ω
−1/2(zzz−ξ )} be a location-scale pdf, where ξ ∈Rk is the

location vector and Ω ∈ Rk×k is the dispersion/scale matrix. Let ZZZ0 = Ω
−1/2(ZZZ −ξ ) be a

standardized version of ZZZ, with standardized pdf f (zzz0) that does not depend on (ξ ,Ω). Then

H(ZZZ) =
1
2

log|Ω|+H(ZZZ0), (1.2)

where H(ZZZ0) =−E[log{ f (ZZZ0)}] is the entropy of the standardized random vector ZZZ0.

Defined according to Gray (1990), we consider the following concept of mutual infor-
mation index. Let X ∈ Rn and Y ∈ Rm be two random vectors with joint and marginal pdfs
f (x,y), f (x) and f (y), respectively. The mutual information index between X and Y is
defined by

I(X,Y) = E
[

log
{

f (X,Y)

f (X) f (Y)

}]
=
∫
Rm

∫
Rn

log
{

f (x,y)
f (x) f (y)

}
f (x,y)dxdy. (1.3)

From (1.3) and (1.1) it is straightforward to see that the mutual information index I(X,Y)

between X and Y can be computed as

I(X,Y) = H(X)+H(Y)−H(XY), (1.4)

where H(XY), H(X) and H(Y) are joint and marginal entropies of (X,Y), X, and Y, re-
spectively. By definition, I(X,Y) = 0 when the random vectors X and Y are independent,
otherwise this index is positive (Cover and Thomas, 2006) and it increases with the degree of
dependence between the components of X and Y. In other words, the mutual information
index provides a generalized measure of association between X and Y, which is particularly
convenient in those models where the correlation is not defined.

The Shannon entropy of a localization-scale random variable X = µ +Σ
1/2ZZZ, does not

depend on µ and is such that H(X) = (1/2) log |Σ|+H(ZZZ) (see e.g. Arellano-Valle et al.,
2013, Dembo et al., 1991). The SE could serve to define a measure of disparity from
normality, the so-called negentropy (Hyvärinen et al., 2001), which is zero for a normal
variable and positive for any distribution. It is defined by

N(ZZZ) = H(ZZZ′
0)−H(ZZZ), (1.5)
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where ZZZ′
0 being a normal random variable with the same mean and variance as that of

ZZZ. Eq. (1.5) express the negentropy in terms of the standardized version of ZZZ, say ZZZ∗,
as N(ZZZ) = H(ZZZ0)−H(ZZZ∗) = N(ZZZ∗), which ZZZ∗ has zero mean and unit variance. Thus,
negentropy measures essentially the amount of information that departs from the normal
entropy. Also, clearly the negentropy becomes the KL divergence (see Eq. (1.13) below)
between ZZZ∗ and ZZZ0.

1.2 Rényi entropy and complexity measure

The αth-order Rényi entropy (Rényi, 1970) of ZZZ ∈Rk is defined by

Rα(ZZZ) =
1

1−α
log
∫
Rk
[ f (zzz)]αdzzz. (1.6)

Golshani and Pasha (2010) provide the following important properties of the Rényi entropy:

1. Rα(ZZZ) can be negative,

2. Rα(ZZZ) is invariant under a location transformation,

3. Rα(ZZZ) is not invariant under a scale transformation, and

4. for any α1 < α2, we have Rα1(ZZZ) ≥ Rα2(ZZZ), which are equal if and only if ZZZ is
uniformly distributed.

From (1.6), the Shannon entropy is obtained by the limit

H(ZZZ) = lim
α→1

Rα(ZZZ) =−
∫
Rk

f (zzz)log f (zzz)dzzz (1.7)

by applying l’Hôpital’s rule to Rα(ZZZ) with respect to α (Rényi, 1970). In addition, the Rényi
entropy corresponds to a generalization of Shannon entropy that provides some additional
mathematical advantages, such as include an α-order for compare two Rényi entropies
(property 4). Song (2001) recall on Rényi entropy’s connection to the log-likelihood for a
continuous random variable.

Example 1. (Cover and Thomas, 2006, Dembo et al., 1991). Let ZZZ ∈Rk be a normal random
vector with mean vector µ ∈Rk and covariance matrix Σ of dimension k×k with determinant
|Σ|> 0. Then, the Rényi and Shannon entropies of ZZZ are given by

Rα(ZZZ) =
1
2

log{(2π)k|Σ|}+ klogα

2(α −1)
, 1 < α < ∞, (1.8)
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H(ZZZ) =
1
2

log{(2πe)k|Σ|}, (1.9)

respectively.

Another important concept is the statistical complexity that measures the randomness
and structural correlations of a known system (Carpi et al., 2011). López-Ruiz et al. (1995)
proposed a measure of statistical complexity (LMC) in order to determine the disequilibrium
of the system attributed to entropy measure (Anteneodo and Plastino, 1996, Sánchez-Moreno
et al., 2014). LMC measure is defined as

LMC(ZZZ) = eH(ZZZ)−R2(ZZZ), (1.10)

where R2(ZZZ) is the quadratic Rényi entropy of ZZZ (α = 2). Yamano (2004) provide an
extensive entropy instead of an additive Shannon entropy in (1.10), characterized as a
difference between the αth-order Rényi entropy and quadratic Rényi entropy as

Cα(ZZZ) = eRα (ZZZ)−R2(ZZZ). (1.11)

Note that Cα(ZZZ) reflects the shape of the distribution of ZZZ and takes unity for all distributions
when α = 2. In addition, Cα satisfies a great variety of interesting mathematical and physical
properties. Let us just recall here the following properties:

1. Cα(ZZZ)> 1, ∀α ≤ 2, and, 0 <Cα(ZZZ)≤ 1, ∀α > 2;

2. Cα(ZZZ) is invariant under a location and scale transformation in the distribution of ZZZ;

3. Cα(ZZZ) is invariant under replications of the original distribution of ZZZ.

1.3 Cross-entropy and related divergences

Suppose now that X, Y∈Rk are two random vectors with pdf’s fX(x) and fY(y), respectively,
which are assumed to have the same support. Under these conditions, the cross-entropy
(CE)-also called relative entropy- associated to Shannon entropy (1.1) is related to compare
the information measure of Y with respect to X, and is defined as follows

CH(X,Y) =−E[log fY(X)] =−
∫
Rk

fX(x) log fY(x)dx. (1.12)

It is clear from (1.12) that CH(X,X) = H(X). However, CH(X,Y) ̸=CH(Y,X) at least that
X d
= Y, i.e., X and Y have the same distribution.
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Related to the entropy and CE concepts we can also find divergence measures between
the distributions of X and Y. The most well-known of these measures is the so called
Kullback-Leibler (KL) divergence proposed by Kullback and Leibler (1951) as

K(X,Y) = E
[

log
{

fX(X)

fY(X)

}]
=
∫
Rk

fX(x) log
{

fX(x)
fY(x)

}
dx. (1.13)

which measures the divergence of fY from fX. KL is a pseudo distance (or discriminant
function) between two distributions and which is the most common divergence measures
used in practical works. Also KL divergence is considered a good indicator of the correlation
degree between two finite sets of data, specially if they are affected by noise produced by the
interaction of the system, or the measurement error (Tumminello et al., 2007).

We note that (1.13) comes from (1.12) as

K(X,Y) =CH(X,Y)−H(X). (1.14)

Thus, we have K(X,X) = 0, but again K(X,Y) ̸= K(Y,X) at least that X d
= Y, i.e., the

KL-divergence is not symmetric. Also, it is easy to see that it does not satisfy the triangular
inequality, which is another condition of a proper distance measure (see Ullah, 1996). Hence
it must be interpreted as a pseudo-distance measure only.

A familiar symmetric variant of the KL-divergence is the Jeffreys divergence or simply
J-divergence (e.g Jeffreys, 1946), which is defined by

J(X,Y) = E
[{

fX(X)

fY(X)
−1
}

log
{

fX(X)

fY(X)

}]
.

It could be expressed in terms of the KL-divergence as

J(X,Y) = K(X,Y)+K(Y,X). (1.15)

As is pointed in Ullah (1996), this measure does not satisfy the triangular inequality of
distance and hence it is a pseudo-distance measure. The J-divergence has several practical
uses in statistic as, e.g., for detecting influential data in regression analysis and model
comparisons (see Arellano-Valle et al., 2000).

The Jensen–Shannon (JS) distance (Lin, 1991) corresponds to the capability of a random
variable with two entries and giving as output the pdfs of X and Y. This also provides
important properties in the study of decision-making problems (Lin, 1991) and complex



6 Background of Information theory

networks (Carpi et al., 2011). JS is defined in terms of Shannon entropy as

JS(X,Y) = H
(

X+Y
2

)
− 1

2
{H(X)+H(Y)}, (1.16)

and has the properties of a metric given by:

1. non-negativity, JS(X,Y)≥ 0;

2. disappears if and only if the two densities are equal almost everywhere, JS(X,Y) =

0 ⇔ X = Y;

3. symmetry, JS(X,Y) = JS(Y,X);

4. triangular inequality, JS(X,Y)≤ JS(X,ZZZ)+ JS(ZZZ,Y), ∀X,Y,ZZZ ∈ Rk (Briët and Har-
remoës, 2009).

JS distance has some advantages over the KL (symmetry and triangular inequality) and J
(triangular inequality) divergences.



Chapter 2

Asymmetric and heavy-tailed class of
distributions

In the last three decades, non-normal distributions have received substantial interest within
scientific literature, especially in regards to skew-elliptical distributions. This class of flexible
distribution is characterized for account with skewness and heavy-tails as an extra parame-
ters respect to elliptical distributions as normal and t (Arellano-Valle and Bolfarine, 1995,
Arellano-Valle et al., 1994, Fang et al., 1990, Genton, 2004), behind the multivariate skew-
normal (SN, Azzalini and Capitanio, 1999, Azzalini and Dalla-Valle, 1996) and multivariate
skew-t (ST, Arellano-Valle and Genton, 2005, Azzalini and Capitanio, 2003, Branco and
Dey, 2001, Gupta, 2003) distributions. They have been successfully applied to numerous
datasets from a wide range of fields including biological sciences, geophysics, astronomy,
engineering and economics. Some recent applications of ST models include those by Genton
(2004), Lee et al. (2010), Ghizzoni et al. (2010) and Eling (2012).

The family of SN distributions has been popularized by Azzalini (1985) and ever since it
has been discussed extensively in the literature. Such discussions include a wide variety of
skewed models in addition to having normal distribution as a special case and flexibility in
capturing skewness in the data (Azzalini and Capitanio, 2013). In this sense, González-Farías
et al. (2004) present the closed skew-normal distribution as an extension of the SN case, but
closed under operations such as sums, marginalization, and linear conditioning (Rezaie et al.,
2014). Another generalization of the skew-normal distribution is the extended SN distribution
(ESN, Capitanio et al., 2003) that adds a fourth real parameter to accommodate both skewness
and heavy tails. All these distributions are extended and unified by Arellano-Valle and Genton
(2005), Arellano-Valle and Azzalini (2006), Arellano-Valle et al. (2006) and Arellano-Valle
(2010). In some cases where observed variables can be simultaneously skewed and restricted
to a fixed interval, the truncated SN distribution (TSN, Jamalizadeh et al., 2009) is a good
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choice for those applications, especially for environmental and biological variables in which
the observations are positives (Flecher et al., 2010).

In this section, we review five class of asymmetric and heavy-tailed distributions. Specif-
ically the multivariate elliptical distributions that contains the normal and t cases; the
multivariate skew-elliptical (SE) distributions that contains the SN and ST cases, and with the
finite mixture of SN (FMSN) distributions as another case; the closed skew-normal (CSN)
distribution that contain the SN, ESN, and TSN cases; and the generalized skew-normal
(GSN) distribution that contains the skew-normal (SN) and modified skew-normal (MSN)
cases.

2.1 Multivariate elliptical distributions

The multivariate elliptical family of distributions defines one of the most important classes
of symmetric location-scale models. It contains the normal model and preserves most of its
main properties. For a systematic review of this family, see, e.g., Arellano-Valle et al. (1994),
Fang et al. (1990). In this section, we give the ingredients to compute the elliptical mutual
information index.

Let ZZZ ∼ ECk(ξ ,Ω,h(k)) be an elliptical random vector in Rk, with location vector ξ ∈Rk,
dispersion matrix Ω ∈ Rk×k and density generator function h(k), whose pdf is

f (zzz)≡ fk(zzz;ξ ,Ω,h(k)) = |Ω|−1/2h(k)
{
(zzz−ξ )T

Ω
−1(zzz−ξ )

}
, zzz ∈ Rk.

Here, the density generator function h(k) is a non-negative real-valued function such that

g(s) =
πk/2

Γ(k/2)
sk/2−1h(k)(s), s > 0, (2.1)

is a valid pdf. Note that f (zzz) = |Ω|−1/2h(k)(zzzT
0 zzz0), where zzz0 = Ω

−1/2(zzz−ξ ).
As in Arellano-Valle et al. (2006), we call the distribution of S a squared-radial distribution

and we denote it by R2(h(k)). Considering that if(
X
Y

)
∼ ECn+m

((
ξ X
ξ Y

)
,

(
ΩXX ΩXY

ΩYX ΩYY

)
,h(n+m)

)
,

then the respective marginal random vectors are distributed as X ∼ ECn(ξ X,ΩXX,h(n)) and
Y ∼ ECm(ξ Y,ΩYY,h(m)). The determinant of the joint dispersion matrix Ω can be computed
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as

|Ω|=

∣∣∣∣∣ ΩXX ΩXY

ΩYX ΩYY

∣∣∣∣∣= |ΩYY||ΩXX||In −BX·YBY·X|, (2.2)

where BX·Y = Ω
−1
XXΩXY and BY·X = Ω

−1
YYΩYX are the matrices of regression coefficients

associated with the regression functions of X|Y = y and Y|X = x, respectively. Note here
that 0 ≤ |In −BX·YBY·X| ≤ 1.

The normal and t distributions are, however, particular cases of the so-called scale
mixtures of normal distributions, a subclass of elliptical distributions, for which the density
generator function can be represented as

h(k)(u) =
∫

∞

0
vk/2h(k)N (

√
vu)dF(v),

where
h(k)N (s) = (2π)−k/2e−s/2, s > 0,

and F is a cumulative density function (cdf) on (0,∞) that does not depend on k. This is
equivalent to representing stochastically the spherical random vector ZZZ0 = Ω

−1/2(ZZZ −ξ ) as
ZZZ0

d
=V−1/2ZZZ0N , where V ∼ F , ZZZ0N ∼ Nk(0, Ik) and they are independent. As a consequence

of this fact, we have S d
= V−1SN , where SN ∼ χ2

k and is independent of V . We study the
normal and t special cases in the next sections.

2.1.1 Multivariate normal distribution

The multivariate normal distribution, namely ZZZ ∼ Nk(ξ ,Ω), is a particular member of the
elliptical family. In this case, E(ZZZ) = ξ and Var(ZZZ) = Ω. Moreover, for the normal density
generator function and for the distribution of the normal squared radial random variable we
have S = (ZZZ −ξ )T Ω

−1(ZZZ −ξ )∼ χ2
k , the chi-squared distribution with k degrees of freedom.

2.1.2 Multivariate t distribution

Another important member is the multivariate t distribution ZZZ ∼ Tk(ξ ,Ω,ν), where ν > 0 is
the degrees of freedom, for which E(ZZZ) = ξ for ν > 1 and Var(ZZZ) = ν

ν−2Ω for ν > 2. For
the Student-t distribution, we have

h(k)T (s) =
Γ{(ν + k)/2}

Γ(ν/2)(νπ)k/2

(
1+

s
ν

)−(ν+k)/2
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and S/k ∼ Fk,ν , the Fisher distribution with k and ν degrees of freedom. Further properties
of these distributions can be found in Fang et al. (1990), Arellano-Valle et al. (1994) and in
Arellano-Valle et al. (2006). For the particular case of the t distributions, see Arellano-Valle
and Bolfarine (1995).

2.1.3 Scale mixture of normal

For this distribution (Andrews and Mallows, 1974), we have

h(k)(u) =
∫

∞

0
vk/2h(k)N (

√
vu)dF(v),

for some cdf F on (0,∞). By considering the following stochastic representation:

ZZZ d
= ξ +V−1/2ZZZN ,

where V ∼ F is independent of ZZZN ∼ Nk(0,Ω); we have the scale mixture of normal (SMN)
random variable SSMN

d
= V−1SN , where V ∼ F is independent of SN ∼ χ2

k . This class of
distributions will not be addressed in Chapter 3.

2.2 Multivariate skew-elliptical distributions

A flexible class of location-scale models is defined by the so-called SE family of distributions;
see Arellano-Valle and Azzalini (2006), Arellano-Valle and Genton (2005, 2010), Arellano-
Valle et al. (2006), Azzalini and Capitanio (1999, 2003), Branco and Dey (2001) and Genton
(2004). It allows for modeling skewness in the distribution of the data. In this section, we
extend the previous results to this more general class.

We say that a random vector ZZZ ∈ Rk has a SE distribution, with location vector ξ ∈
Rk, dispersion matrix Ω ∈ Rk×k, shape/skewness parameter η ∈ Rk and density generator
function h(k+1), denoted by ZZZ ∼ SEk(ξ ,Ω,η ,h(k+1)), if its pdf is

f (zzz) = 2 fk(zzz;ξ ,Ω,h(k))F(ηT (zzz−ξ );h(1)s ), zzz ∈ Rk, (2.3)

where fk(zzz;ξ ,Ω,h(k)) = |Ω|−1/2h(k)(s) with s = zzzT
0 zzz0 and zzz0 = Ω

−1/2(zzz− ξ ), that is, the
pdf of an ECk(ξ ,Ω,h(k)) distribution, and F(x;h(1)s ) =

∫ x
−∞

h(1)s (w)dw is the univariate cdf
induced by the conditional density generator function h(1)s (u) = h(k+1)(s+u)/h(k)(s).
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Let η̄ = Ω
1/2

η . In terms of zzz0 = Ω
−1/2(zzz− ξ ), the SE pdf (2.3) can be rewritten as

f (zzz) = |Ω|−1/2 f (zzz0), where

f (zzz0) = 2h(k)(zzzT
0 zzz0)F(η̄T zzz0;h(1)s )

is the pdf of ZZZ0 = Ω
−1/2(ZZZ−ξ )∼ SEk(0, Ik, η̄ ,h(k+1)) (see, e.g., Arellano-Valle and Genton,

2010).

ST:    Skew-t
SN:   Skew-normal
T:       Student-t
N:      Normal

Fig. 2.1 Relationships among the skew-elliptical distributions: the skew-t (ST) contains the t
(T), skew-normal (SN) and normal (N) distributions as special cases.

For the univariate case (η = λ ), see Figure 2.1 for relationships among skew-elliptical
distributions considered in this study. We study the SN and ST special cases in the next
sections.

2.2.1 Multivariate skew-normal distribution

The SN distribution has been introduced by Azzalini and Dalla-Valle (1996). This model and
its variants have focalized the attention of an increasing number of research. For simplicity
of exposition, we consider here a slight variant of the original definition as considered in
Arellano-Valle and Genton (2005). We say that a random vector ZZZ ∈Rk has a SN distribution
with location vector ξ ∈ Rk, dispersion matrix Ω ∈ Rk×k and shape/skewness parameter
η ∈ Rk, denoted by ZZZ ∼ SNk(ξ ,Ω,η), if its pdf is

f (zzz) = 2φk(zzz;ξ ,Ω)Φ{η
T (zzz−ξ )}, zzz ∈ Rk, (2.4)

where φk(zzz;ξ ,Ω) = |Ω|−1/2φk(zzz0) is the Nk(ξ ,Ω) pdf, zzz0 = Ω
−1/2(zzz− ξ ), φk(zzz0) is the

Nk(0, Ik) pdf, and Φ is the univariate N1(0,1) cdf.
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We can rewrite (2.4) as

f (zzz) = |Ω|−1/2 f (zzz0), with f (zzz0) = 2φk(zzz0)Φ(η̄T zzz0), (2.5)

where η̄ = Ω
1/2

η .
The stochastic representation of ZZZ is given by

ZZZ d
= ξ +δ |U0|+U, (2.6)

here U0 ∼ N(0,1) and U ∼ Nd(0,Ω− δδ
⊤), δ = Ωη/

√
1+η⊤Ωη , |δ | < 1, which are

independent. |U0| represents the absolute value of U0, i.e., it is half-normal distributed. From
(2.6), Azzalini and Capitanio (1999) derived the mean vector and covariance matrix of ZZZ:

E[ZZZ] = ξ +

√
2
π

δ , (2.7)

Var[ZZZ] = Ω− 2
π

δδ
⊤. (2.8)

2.2.2 Finite mixtures of multivariate skew-normal distributions

Let us consider the definition of Frühwirth-Schnatter and Pyne (2010) for finite mixtures
of SN (FMSN) distributions. The pdf of a m-component mixture model with parameter
vector set θ̃θθ = (ξ̃ ,Ω̃, η̃), where ξ̃ = (ξ 1, . . . ,ξ m) is a set of m location vector parameters,
Ω̃ = (Ω1, . . . ,Ωm) is a set of m dispersion matrices, η̃ = (η1, . . . ,ηm) is a set of shape vector,
is

f (y; θ̃θθ ,π) =
m

∑
i=1

πi f (y;θθθ i), (2.9)

where π = (π1, . . . ,πm) is a vector of mixing weights πi, with πi ≥ 0, ∑
m
i=1 πi = 1, and f (y;θθθ i)

are defined as in (2.4) with θθθ i = (ξ i,Ωi,η i), i = 1, . . . ,m. Additional details about the log-
likelihood function of an FMSN model are described in Lin (2009). Let S = (S1, . . . ,Sn) be
a set of n latent allocations for the distribution of a FMSN random vector Y = (Y1, . . . ,Yn),
f (y; θ̃θθ ,π) = ∏

n
j=1 f (s j; θ̃θθ), where Pr(S j = i|π) = πi. Then, conditionally on S j = i, an

stochastic representation of the j-th component in (2.6) is

Y j|(S j = i) d
= ξ i +δ i|U0 j|+

√
Ωi −δ iδ

⊤
i U j, j = 1, . . . ,n, (2.10)

where U0 j ∼ N(0,1) and U j ∼ Nk(0, Ik) and they are mutually independent and δ i =

Ωiη i/
√

1+η⊤
i Ωiη i, i = 1, . . . ,m. Considering the stochastic representation (2.10), (2.7)
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and (2.8); we obtain for the mean vector and covariance matrix of Y that

E[Y] =
m

∑
i=1

πi

(
ξ i +

√
2
π

δ i

)
, (2.11)

Var[Y] =
m

∑
i=1

πi

[
Ωi −

2
π

δ iδ
⊤
i +µµµ iµµµ

⊤
i

]
, (2.12)

with µµµ i = ξ i +
√

2
π

δ i −E[Y], i = 1, . . . ,m.

2.2.3 Multivariate skew-t distribution

We say that a random vector ZZZ ∈ Rk has a ST distribution with location vector ξ ∈ Rk,
dispersion matrix Ω∈Rk×k, shape/skewness parameter η ∈Rk and ν > 0 degrees of freedom,
denoted by ZZZ ∼ STk(ξ ,Ω,η ,ν), if its pdf is

f (zzz) = 2|Ω|−1/2tk(zzz0;ν)T

(√
ν + k

ν +∥zzz0∥2 η̄
T zzz0;ν + k

)
, (2.13)

where as before zzz0 = Ω
−1/2(zzz− ξ ), tk(x;ν) is the tk(0, Ik,ν) pdf, and T (x;ν + k) is the

T1(0,1,ν +k) cdf; see Branco and Dey (2001), Azzalini and Capitanio (2003), Gupta (2003),
Ma and Genton (2004) and Arellano-Valle and Genton (2005). For this model, we have
ZZZ0 ∼ STk(0, Ik, η̄ ,ν), with pdf

f (zzz0) = 2tk(zzz0;ν)T

(√
ν + k

ν +∥zzz0∥2 η̄
T zzz0;ν + k

)
.

The MST distribution includes the MT distribution as a special case and is related to the
MSN distribution by the equation

ZZZ d
= ξ +V−1/2ZZZ0, (2.14)

where ZZZ0 ∼ SNk(0,Ω,η) and V ∼ χ2/ν , and they are independent, where χ2 denote the
univariate chi-square distribution (Azzalini and Capitanio, 2003). Also is well-know that
E(V−m/2) = Km(ZZZ), m ≥ 1, where V ∼ χ2/ν and

Km(ZZZ) =
(

ν

2

)m/2 Γ
(

ν−m
2

)
Γ
(

ν

2

) , ν > m,

is the m-cumulant function of ZZZ.
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Remark 1. An asymptotic expression for gamma function given by Jose and Naik (2008)
allow the approximation of the function

Bk(ν) =
Γ
(

ν+k
2

)
Γ
(

ν

2

)
(νπ)k/2 , ν > 0.

Let a < ∞, then Γ(x+a)≈
√

2πxx+a−1/2e−x, as |x| → ∞. Therefore, Bk(ν) can be approxi-
mated by

Bk(ν)≈ (2π)−k/2, (2.15)

as ν → ∞.

2.2.4 Scale mixture of skew-normal

As in Section 2.1.3, we can define the scale mixture of SN distributions (SMSN; see
e.g. Contreras-Reyes and Arellano-Valle, 2013) by replacing ZZZN ∼ Nk(0,Ω) with ZZZSN ∼
SNk(0,Ω,η) in the stochastic representation. This class contains several distributions: SMN,
SN, ST, skew contaminated normal and skew-slash distributions. This class of distributions
will not be addressed in Chapter 3.

2.3 Multivariate closed skew-normal distributions

Concerning the definition of González-Farías et al. (2004) (see also Arellano-Valle and Azza-
lini, 2006), let Y∈Rk be a random vector with CSN distribution denoted as CSNk,s(µ,Ω,D,ϕ,A)

and with pdf

f (y) = φk(y; µ,Ω)
Φs(D⊤(y−µ);ϕ,A)

Φs(0;ϕ,A+D⊤ΩD)
, (2.16)

where µ ∈ Rk, ϕ ∈ Rs, Ω ∈ Rk×k and A ∈ Rs×s are both covariance matrices, D ∈ Rk×s,
φk(y; µ,Ω) and Φk(y; µ,Ω) are the pdf and cdf, respectively, of the k-dimensional normal
distribution with mean vector µ and variance matrix Ω. The CSN distribution is closed under
translations, scalar multiplications, and full, row rank linear transformations (Genton, 2004,
González-Farías et al., 2004). The CSN is redefined by Arellano-Valle et al. (2006) as unified
skew-normal (SUN) distribution. SUN distribution presents a more flexible conditioning
mechanism than CSN, by relaxing the conditions Ω > 0 and A > 0. In addition, in CSN case
the skewness parameter D is not invariant to changes of scale. Once the above aspects of the
parametrization are adjusted, the SUN and CSN classes are equivalent, on setting Ω̄ = Ω,
Γ = A+D⊤ΩD and ∆ = ΩD in Eqs. (8) and (10) of Arellano-Valle et al. (2006).
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Let T ∈Rn×k be a matrix with rank n such that k ≤ n, then

TY =CSNn,s(Tµ,Ω̃, D̃,ϕ, T̃) (2.17)

where Ω̃ = T⊤ΩT, D̃ = D⊤ΩTΩ̃
−1, and T̃ = A+D⊤ΩD− D̃⊤Ω̃D̃ (see Proposition 2.3.1

of Genton, 2004).
A particular case of (2.17) is the standardised random vector zzz0 = Ω

−1(y−µ). In this
case, Eq. (2.16) is rewritten as

f (zzz0) = φk(zzz0)
Φs(D⊤Ω

1/2zzz0;ϕ,A)

Φs(0;ϕ,A+D⊤ΩD)
. (2.18)

Given that the CSN distribution is closed under translations and by property (2.17), the
standardised random vector ZZZ0 follows CSNk,s(0, Ik,D⊤Ω

1/2,ϕ,A), where Ik denotes the
k-dimensional identity matrix. For more details, see Flecher et al. (2009) and Genton (2004).
For the moment generating function of the CSN distribution, see González-Farías et al.
(2004).

Lemma 2. (Flecher et al., 2009). Let Y be a CSNk,s(µ,Ω,D,0,A), r a positive integer and
h(y) = h(y1, . . . ,yk) be any real valued function such that E[h(Y)] is finite, then

E[h(Y){Φk(Y;0, Ik)}r] = E[h(Ỹ)]
Φrk+s(0; ϕ̃, Ã+ D̃⊤ΩD̃)

Φs(0;0,A+D⊤ΩD)
, (2.19)

where Ỹ ∼CSNk,rk+s(µ,Ω, D̃, ϕ̃, Ã) with D̃ = (E⊤, D⊤), E a k× rk matrix defined by E =

(Ik, . . . , Ik), ϕ̃ = (−µ, . . . ,−µ,0s) a (rk+ s) vector and Ã =

(
Irk 0
0 A

)
.

2.3.1 Multivariate skew-normal distribution

A special case of CSN is the normal density when D = 0 as is defined in Section 2.2.1. When
s = 1 and D = η , the multivariate SN density function is obtained (Azzalini and Capitanio,
1999, 2013, Azzalini and Dalla-Valle, 1996). For more details about MSN distribution, see
Section 2.2.1.

2.3.2 Multivariate extended skew-normal distribution

The ESN distribution is another special case of the CSN or SUN distribution which is
obtained for s = 1. Consider a slight variant of the ESN distribution proposed by Capitanio
et al. (2003). Let ZZZ ∼ ESNk(µ,Ω,η ,τ), ZZZ ∈ Rk, with mean vector µ ∈ Rk, variance matrix
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Ω ∈Rk×k, shape/skewness parameter η ∈Rk, extended parameter τ ∈R, and with pdf given
by:

f (zzz) =
1

Φ1(τ)
φk(zzz; µ,Ω)Φ1[η

⊤(zzz−µ)+ τ̃], (2.20)

where zzz ∈ Rk and τ̃ = τ
√

1+η⊤Ωη . The mean vector and the variance matrix of ZZZ are

E[ZZZ] = µ +δζ1(τ), (2.21)

Var[ZZZ] = Ω−ζ1(τ)[τ +ζ1(τ)]δδ
⊤, (2.22)

respectively; where ζ1(zzz) = φ(zzz)/Φ1(zzz) is the zeta function (Azzalini and Capitanio, 1999,
Capitanio et al., 2003). The SN distribution is a particular case of ESN distribution by setting
τ = 0 in (2.20). From Arellano-Valle and Azzalini (2006), a stochastic representation of the
ESN distribution is

ZZZ d
= W+δU, (2.23)

where δ = Ωη/
√

1+η⊤Ωη , U ∼ LT N(−τ,∞)(0,1), which is independent of W ∼ Nk (ξ ,Σ),
Σ = Ω − δδ

⊤, where LT N(−τ,∞)(0,1) represents the unit normal distribution truncated

below the point −τ and “ d
=” denotes equality in terms of distribution. From the stochastic

representation (2.23) it follows that ZZZ d
= W+δWτ , where Wτ

d
= (W0 |W0 + τ > 0) and(

W0

W

)
∼ N1+k

((
0
ξ

)
,

(
1 0⊤

0 Ω

))
.

Note that W0 and W are independent. This fact must be interpreted as the non-normality
effect of W0 on ZZZ, where W0 is the so-called unobserved confounder variable.

2.4 Generalized skew-normal distribution

An attractive class of skew-symmetric (SS) distributions defined in terms of pdf appears in
Azzalini (1985), Azzalini and Capitanio (1999) and Gupta et al. (2002)

f (z;η) = 2 f (z)G{w(z;η)}, z ∈ R, (2.24)

where η ∈ R represents a skewness/shape parameter, f and G are the respective pdf and cdf
of symmetrical continuous distributions, and w(z;η) an odd function of z, with w(0;η) = 0
for any fixed value of η . Also, we assume that w(z;η0) = 0 for all z and some value η0 of η

(typically η0 = 0), so that f (z;η0) = f (z), thus recovering symmetry.
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The notation Z ∼ SS(η ; f ,G,w) expresses that random variable Z has distribution with
pdf given by (2.24). If f (z) = φ(z) represents the pdf of the standardized normal distribution,
denoted by N(0,1), then (2.24) becomes a family of SS distributions generated by the
normal kernel, also known as GSN family. In this case, Z ∼ GSN(η ;G,w) emerges. An
important property of the GSN random variable Z is that all its moments are finite. In
particular, it possess the same even moments of Z0 ∼ N(0,1). For instance, E(Z2) = 1 and
so Var(Z) = 1−µ2

z , where µz = E(Z). The most popular GSN distribution is SN (Azzalini
and Capitanio, 2013), for which w(z;η) = ηz and G(z) = Φ(z) is the cdf of the standardized
normal distribution. So Z ∼ SN(η) expresses that Z follows an SN distribution. The location-
scale extension of the SS pdf in (2.24) follows by applying the Jacobian method to the linear
random variable X = µ +σZ, where µ ∈R and σ > 0. In this case, we state that X follows a
SS distribution with location parameter µ , scale parameter σ and shape/skewness parameter
η and get X ∼ SS(µ,σ2,η ; f ,G,w). Furthermore, we write X ∼ GSN(µ,σ2,η ;G,w) if
f = φ , X ∼ GSN(µ,σ2,η ;G) if f = φ and w(z;η) = ηz, and X ∼ SN(µ,σ2,η) if f = φ ,
w(z;η) = ηz and G = Φ.

Two other members of the GSN family that have been studied recently are the Skew-
Normal-Cauchy (SNC) distribution (Arrué et al., 2010, Nadarajah and Kotz, 2003), which
follows from (2.24) by taking f (z) = φ(z), w(z;η) = ηz and G(z) = 1/2+(1/π)arctan(z),
and the MSN distribution (Arrué et al., 2016), for which f (z) = φ(z), w(z;η) = ηz/

√
1+ z2

and G(z) = Φ(z). Nadarajah and Kotz (2003) recall that SNC distribution appears to attain a
higher degree of sharpness than normal distribution, i.e., disparity exists from the common
normal distribution produced by the skewness parameter η . A random variable Z with SNC
or MSN distribution is denoted, respectively, by Z ∼ SNC(η) or Z ∼ MSN(η), and by X ∼
SNC(µ,σ2,η ;G) or X ∼ MSN(µ,σ2,η ;G) for their respective location-scale extensions.

2.4.1 Skew-normal distribution

If Z ∼ SN(η) or Z ∼ SN(0,1,η) represents a SN random variable, then its pdf is

f (z;η) = 2φ(z)Φ(ηz), z ∈ R, η ∈ R. (2.25)

Clearly, if η = η0 = 0, then (2.25) reduces to the N(0,1)-pdf. The SN random variable Z
has the following properties (Azzalini, 1985):

1. As η → ∞, f (z;η) tends to the half-normal density.

2. If Z ∼ SN(η), then −Z ∼ SN(−η).

3. The density (2.25) is strongly unimodal, i.e. log f (z;η) is a concave function of z.
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The SN random variable Z can be conveniently represented as a linear combination of
half-normal and normal variables through the following stochastic representation (Henze,
1986):

Z d
= δ |U0|+

√
1−δ 2U, (2.26)

where δ = η/
√

1+η2, U0 and U are independent and identically distributed with unit
normal distribution. In particular, since the half-normal random variable |U0| has mean
b =

√
2/π and variance 1, it follows from (2.26) that the mean and variance of Zτ , τ = |η |,

are given by

E(Zτ) = bδτ and Var(Zτ) = 1− (bδτ)
2, (2.27)

where δτ = τ/
√

1+ τ2.
The moments µi = E(Zi

τ) are given by

µ2i = (2i−1)!! =
(2i)!
2ii!

(even moments),

µ2i−1 =
(2i−1)!bτ

2i−1(1+ τ2)(2i−1)/2

i−1

∑
j=0

j!(2τ)2 j

(2 j+1)!(i− j−1)!
(odd moments; Henze, 1986).

From Proposition 2 in Martínez et al. (2008), the odd moments can also be computed as

µ2i−1 =
b∑

i
m=1 ai(m)τ2m−1

(1+ τ2)(2i−1)/2
,

where the coefficient ai(m) is computed iteratively as follows:

a1(1) = 1,

ai(1) = (2i−1)ai−1(1), i ≥ 2,

ai(m) = 2(i−1){ai−1(m)+ai−1(m−1)}, 1 < m < i, i ≥ 2,

ai(i) = 2(i−1)ai−1(i−1), i ≥ 2.

2.4.2 Truncated skew-normal distribution

The TSN pdf given by Jamalizadeh et al. (2009) and Flecher et al. (2010), considers the
random variable Z ∼ SN(µ,σ2,η), ZZZ ∈ R, and the definition given in (2.25). Flecher et al.
(2010) gives the expressions of the higher order and weighted moments of TSN distributions.
We also consider the following definition based on (2.25) (when k = 1) for a TSN random
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variable W ∈ [a,b]⊂ R, denoted by W ∼ T SN(µ,σ2,η), and with density

g(w) =
f (w)

[F(w)]ba
, a < w ≤ b, (2.28)

where f (z) is defined in (2.25) for k = 1 with Σ = σ2 and F(z) is the cdf of Z with

[F(w)]ba = F(b)−F(a) =
∫ b

a
f (u)du.

The following Remark allows the computation of [F(w)]ba in terms of the normal cdf and
a bivariate integral term.

Remark 2. (Azzalini, 1985, Owen, 1956). Let Z ∼ SN(µ,σ2,η), F(z) can be computed as
follows

F(z) = 2
∫ −∞

z

∫
λ s

−∞

φ(s)φ(t)dt ds = Φ1(z)−2
∫

∞

z

∫
λ s

0
φ(s)φ(t)dt ds. (2.29)

Then, by replacing (2.29) in [F(w)]ba, we obtain

[F(w)]ba = Φ1(b)−Φ1(a)−2
∫ b

a

∫
λ s

0
φ(s)φ(t)dtds.

2.4.3 Modified skew-normal distribution

The pdf for a random variable Z with MSN distribution, denoted by Z ∼ MSN(η), is given
by

f (z) = 2φ(z)Φ{η u(z)} , z ∈ R,

where u(z) = z/
√

1+ z2. The following properties are straightforward from the results in
Arellano-Valle et al. (2004):

1. If Z ∼ MSN(η), then −Z ∼ MSN(−η).

2. If Z ∼ MSN(η), then |Z| ∼
√

χ2
1 ≡ HN(0,1).

3. If Z|S = s ∼ SN(s) and S ∼ N(λ ,1), then Z ∼ MSN(η).

4. MSN(0)≡ N(0,1) and MSN(η)≡ GSN(η ;G,w) if G(z) = Φ(z) and
w(z;η) = ηz/

√
1+ z2.
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Similarly to the SN case, the MSN random variable Zτ ∼ MSN(τ), τ = |η |, has even
moments equal to the corresponding even moments of the standardized normal random
variable Z0 (Arrué et al., 2016), i.e., µ2i = (2i−1)!! = (2i)!/(2ii!). Recalling that b =

√
2/π ,

the odd moments µ2i−1(τ), i = 1,2, . . ., can be computed as

µ2i−1(τ) = 2i−1(i−1)!b{2ξi(τ)−1} ,

with

ξi(τ) =
∫

∞

0
Φ
{

τu(
√

x)
} xi−1e−x/2

2iΓ(i)
dx, i = 1,2, . . . ,

where Γ(·) denotes the usual gamma function. Note that ξi(τ) = E
[
Φ
{

τu(
√

Xi)
}]

, where
Xi ∼ χ2

2i, thus 0 < 2ξi(τ)−1 < 1 for all i = 1,2, . . . and τ > 0. In particular, the first four
moments are µ1(τ) = b{2ξ1(τ)−1}, µ2 = 1, µ3(τ) = 2b{2ξ2(τ)−1}, and µ4 = 3.



Chapter 3

Information measures for symmetric and
asymmetric distributions

Frequently, several authors have been computed information measures for a large list of
univariate and multivariate distributions (Zografos and Nadarajah, 2005). Cover and Thomas
(2006) provides the properties of Shannon entropy and KL divergence measures for multi-
variate normal distribution, among others. Zografos and Nadarajah (2005) gives the entropy
for multivariate t distribution and for several other distributions.

In this chapter, we propose a general and unified theory of the mutual information
for flexible and tractable families of continuous multivariate distributions, in which the
multivariate normal and further well-known symmetric distributions, such as the Student’s
t, are particular members. Specifically, we consider the multivariate elliptical and skew-
elliptical families of distributions (Fang et al., 1990, Genton, 2004), respectively. We
give special attention to the particular cases of the multivariate skew-normal and skew-t
distributions that allow to model skewness.

3.1 Information measures for multivariate elliptical distri-
butions

For this class, we note that if the standardized random vector ZZZ0 = Ω
−1/2(ZZZ − ξ ) has a

spherical pdf f (zzz0) = h(k)(zzz⊤0 zzz0), ZZZ0 ∈ Rk, ZZZ ∼ ECk(ξ ,Ω,h(k)), then its entropy is given by

H(ZZZ0) =−E[log{h(k)(ZZZ⊤
0 ZZZ0)}]. (3.1)

This expectation depends on the distribution of the squared radial random variable S =

ZZZ⊤
0 ZZZ0 = (ZZZ −ξ )⊤Ω

−1(ZZZ −ξ ) which has the radial-square pdf g(s) given in Eq. (2.1).
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Considering an elliptical random vector (X,Y) with marginal distributions X∼ECn(ξ X,ΩXX,h(n))
and Y ∼ ECm(ξ Y,ΩYY,h(m)), it is clear from the above results that the respective marginal
and joint entropies are

H(X) =
1
2

log |ΩXX|−E[log{h(n)(SX)}],

H(Y) =
1
2

log |ΩYY|−E[log{h(m)(SY)}],

H(XY) =
1
2

log |Ω|−E[log{h(n+m)(SXY)}],

where SX ∼ R2(h(n)), SY ∼ R2(h(m)) and SXY ∼ R2(h(n+m)).
Considering the determinant of the joint dispersion matrix Ω (2.2), the elliptical mutual

information index between X and Y is

I(X,Y) = E[log{h(n+m)(SXY)}]−E[log{h(n)(SX)}]−E[log{h(m)(SY)}]

−1
2

log |In −BX·YBY·X|. (3.2)

The last term in (3.2) represents the information due the dispersion matrix Ω, which is the
same for the whole elliptical class. A similar fact occurs with the correlation matrix induced
by Ω, which means that within the elliptical family, the correlation does not depend on the
specific elliptical density generator h. As a consequence from (3.2), the elliptical mutual
information depends on both Ω and h, allowing differences for the association between X
and Y through the different elliptical joint distributions.

3.1.1 Multivariate normal distribution

Let ZZZ ∼ Nk(ξ ,Ω) denote a k-dimensional normal random vector, with mean vector E(ZZZ) =
ξ ∈ Rk and covariance matrix var(ZZZ) = Ω ∈ Rk×k. We have ZZZ = ξ +Ω

1/2ZZZ0, where ZZZ0 ∼
Nk(0, Ik). From (3.1), since in this case S = ZZZ⊤

0 ZZZ0 ∼ χ2
k , and so E(S) = k, we have

H(ZZZ0) =
k
2

log(2π)+
1
2

E(S) =
k
2
{1+ log(2π)}.

Therefore, by Lemma 1:

H(ZZZ) =
1
2

log |Ω|+ k
2
{1+ log(2π)} . (3.3)
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Now let (
X
Y

)
∼ Nn+m

((
ξ X
ξ Y

)
,

(
ΩXX ΩXY

ΩYX ΩYY

))
.

It is well-known that the marginal distributions are X ∼ Nn(ξ X,ΩXX) and Y ∼ Nm(ξ Y,ΩYY).
Hence, SX ∼ χ2

n , SY ∼ χ2
m and SXY ∼ χ2

n+m, and therefore

H(X) =
1
2

log |ΩXX|+
n
2
{1+ log(2π)} ,

H(Y) =
1
2

log |ΩYY|+
m
2
{1+ log(2π)} ,

H(XY) =
1
2

log |Ω|+ n+m
2

{1+ log(2π)} .

Thus, we obtain from (3.2), that the normal mutual information index between X and Y is

I(X,Y) =
1
2

log
(
|ΩXX||ΩYY|

|Ω|

)
=−1

2
log |In −BX·YBY·X|.

Hence the normal mutual information and Shannon entropy depend only on the covariance
matrix Ω. That is, similar to the correlation coefficients, Shannon’s mutual information index
measures multivariate linear dependence between X and Y.

3.1.2 Multivariate t distribution

From (3.1), we have ZZZ0 = Ω
−1/2(ZZZ−ξ )∼ Tk(0, Ik,ν) and ZZZ⊤

0 ZZZ0 ∼ k Fk,ν . Thus, considering
that

log{h(k)(s)}= log
{

Γ

(
ν + k

2

)}
− log

{
Γ

(
ν

2

)}
− k

2
log(νπ)−

(
ν + k

2

)
log
(

1+
s
ν

)
,

we have H(ZZZ0) = E[log{h(k)(S)}] where S ∼ k Fk,ν . Using now the well-known fact that

S d
= k(S1/k)/(S2/ν), where S1 ∼ χ2

k , S2 ∼ χ2
ν , and they are independent, and consequently

S1 +S2 ∼ χ2
k+ν

, it is straightforward to see that

E
{

log
(

1+
S
ν

)}
= E{log(S1 +S2)}−E{log(S2)}= ψ

(
ν + k

2

)
−ψ

(
ν

2

)
,
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where ψ(x) = d
dx log{Γ(x)} is the digamma function. We find for the entropy of ZZZ0 ∼

Tk(0, Ik,ν) that

H(ZZZ0) =− log

{
Γ
(

ν+k
2

)
Γ
(

ν

2

)
(νπ)k/2

}
+

ν + k
2

{
ψ

(
ν + k

2

)
−ψ

(
ν

2

)}
. (3.4)

Now let (
X
Y

)
∼ Tn+m

((
ξ X
ξ Y

)
,

(
ΩXX ΩXY

ΩYX ΩYY

)
,ν

)
.

From Arellano-Valle and Bolfarine (1995), the marginal distributions are X∼ Tn(ξ X,ΩXX,ν)

and Y∼ Tm(ξ Y,ΩYY,ν). Hence, from (1.4) and (3.4), we deduce that the mutual information
index for the Student’s t case is

I(X,Y) = I(X0,Y0)+ log
[

Γ(ν/2)Γ{(ν +n+m)/2}
Γ{(ν +n)/2}Γ{(ν +m)/2}

]
− ν +m

2
ψ

(
ν +m

2

)
−ν +n

2
ψ

(
ν +n

2

)
+

ν +n+m
2

ψ

(
ν +n+m

2

)
+

ν

2
ψ

(
ν

2

)
, (3.5)

where X0 ∼ Nn(ξ X,ΩXX) and Y0 ∼ Nm(ξ Y,ΩYY). It is interesting to notice that the infor-
mation due to Ω arises from I(X0,Y0) only, and the information due to ν comes from the
remaining terms. It is clear also that, as ν increases, the Student’s t mutual information
converges to the normal mutual information.

3.2 Information measures for multivariate skew-elliptical
distributions

Lemma 1 yields the following result.

Proposition 1. The entropy of a skew-elliptical (SE) random vector ZZZ ∼ SEk(ξ ,Ω,η ,h(k+1))

is
H(ZZZ) = H(ZZZ′)−E[log{2F(η̄⊤ZZZ0;h(1)S )}],

where H(ZZZ′) is the entropy of ZZZ′ ∼ ECk(ξ ,Ω,h(k)), ZZZ0 ∼ SEk(0, Ik, η̄ ,h(k+1)), η̄ = Ω
1/2

η ,
and S = ZZZ⊤

0 ZZZ0.

Its follows from Proposition 1 that to compute the entropy H(ZZZ0), we need only the joint
distribution of U = η̄⊤ZZZ0 and S = ZZZ⊤

0 ZZZ0, where ZZZ0 ∼ SEk(0, Ik, η̄ ,h(k+1)). For this, the next
result is necessary, the proof of which is given in Arellano-Valle et al. (2013).



3.2 Information measures for multivariate skew-elliptical distributions 25

Proposition 2. Let U = η̄⊤ZZZ0 and S = ZZZ⊤
0 ZZZ0, where ZZZ0 ∼ SEk(0, Ik, η̄ ,h(k+1)). Then

(U,S) d
= (∥η̄∥W,S), where ∥η̄∥= η̄⊤η̄ = (η⊤Ωη)1/2, and for k ≥ 2 the joint pdf of (W,S)

can be computed as fW,S(u,s) = fW |S=s(u) fS(s), where

fW |S=s(u) =
2√
s

(
1− u2

s

) k−1
2 −1

F(∥η̄∥u,h(1)s ), |u|<
√

s,

and

fS(s)≡ g(s) =
πk/2

Γ( k
2)

s
k
2−1h(k)(s), s > 0.

3.2.1 Multivariate skew-normal distribution

Shannon Entropy and Mutual Information

We can apply Lemma 1 to obtain the entropy for the skew-normal (SN) random model.
For this, we need the following preliminary result in order to simplify the computation of
this entropy. Its proof can be found in Arellano-Valle and Genton (2010).

Lemma 3. Let ZZZ ∼ SNk(ξ ,Ω,η) and ZZZ0 = Ω
−1/2(ZZZ − ξ ). Let also ZZZ0N ∼ Nk(0, Ik) and

W ∼ SN1(∥η̄∥). Then, ZZZ0 ∼ SNk(0, Ik, η̄) ≡ SNk(η̄), η⊤(ZZZ − ξ ) = η̄⊤ZZZ0
d
= ∥η̄∥W, and

g(ZZZ0)
d
= g(ZZZ0N) for any even function g.

From Lemmas 1 and 3, we have the following result.

Proposition 3. The Shannon entropy of a SN random vector ZZZ ∼ SNk(ξ ,Ω,η) is

H(ZZZ) = H(ZZZN)−E [log{2Φ(∥η̄∥W )}] ,

where H(ZZZN) is the entropy of ZZZN ∼ Nk(ξ ,Ω) given in (3.3), and W ∼ SN1(∥η̄∥).

In order to derive the mutual information index of the SN distribution, we need the
following result about its marginal distributions. Let(

X
Y

)
∼ SNn+m

((
ξ X
ξ Y

)
,

(
ΩXX ΩXY

ΩYX ΩYY

)
,

(
ηX
ηY

))
.

Then X ∼ SNn(ξ X,ΩXX,ηX(Y)) and Y ∼ SNm(ξ Y,ΩYY,ηY(X)) where

ηX(Y) =
ηX +Ω

−1
XXΩXYηY√

1+η⊤
YΩYY·XηY

and ηY(X) =
ηY +Ω

−1
YYΩYXηX√

1+η⊤
XΩXX·YηX

.
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Consequently, by Proposition 3, we obtain the following results for the marginal and joint
SN entropies.

Proposition 4. Let(
X
Y

)
∼ SNn+m

((
ξ X
ξ Y

)
,

(
ΩXX ΩXY

ΩYX ΩYY

)
,

(
ηX
ηY

))
.

Then:

H(X) =
1
2

log |ΩXX|+
n
2
{1+ log(2π)}−E

[
log{2Φ(∥η̄X(Y)∥WX)}

]
,

H(Y) =
1
2

log |ΩYY|+
m
2
{1+ log(2π)}−E

[
log{2Φ(∥η̄Y(X)∥WY)}

]
,

H(XY) =
1
2

log |Ω|+ n+m
2

{1+ log(2π)}−E [log{2Φ(∥η̄XY∥WXY)}] ,

with WX ∼ SN1(∥η̄X(Y)∥), WY ∼ SN1(∥η̄Y(X)∥) and WXY ∼ SN1(∥η̄XY∥), where

∥η̄X(Y)∥= (η⊤
X(Y)ΩXXηX(Y))

1/2, ∥η̄Y(X)∥= (η⊤
Y(X)ΩYYηY(X))

1/2,

and
∥η̄XY∥= (η⊤

X(Y)ΩXXηX(Y)+η
⊤
Y(X)ΩYYηY(X)+2η

⊤
X(Y)ΩXYηY(X))

1/2.

Thus, we obtain from (1.4) that the SN mutual information index between X and Y is

I(X,Y) = I(X0,Y0)+E

{
log

(
VXY

VX(Y)VY(X)

)}
,

where X0 ∼Nk(ξ X,ΩXX), Y0 ∼Nk(ξ Y,ΩYY), VXY = 2Φ(∥η̄XY∥WXY), VX(Y)= 2Φ(∥η̄X(Y)∥WX(Y))

and VY(X) = 2Φ(∥η̄Y(X)∥WY(X)). The mutual information between two normals, I(X0,Y0),
is given in (3.2).

Maximum entropy

We also explore the necessary inequalities to determine the bounds for the entropy
of a variable distributed SN. By Cover and Thomas (2006), for any density fX(x) of a
random vector X ∈ Rk- not necessary normal- with zero mean and variance-covariance
matrix Σ = E[XX⊤], the entropy of X is upper bounded as

H(X)≤ 1
2

log
{
(2πe)k|Σ|

}
, (3.6)
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and
H(X0) =

1
2

log
{
(2πe)k|Ω|

}
, (3.7)

is the entropy of X0 ∼ Nk(0,Ω), i.e, the entropy is maximized under normality. Let X ∼
SNk(ξ ,Ω,η), our interest is now to give an alternative approximation of the entropy of the
SN random vector X. By Proposition 3, we have that the SN entropy is

H(X) =
1
2

log
{
(2πe)k|Ω|

}
−E [log{2Φ(τW )}] ,

where W ∼ SN1 (τ) with τ = (η⊤Ωη)1/2. By (3.20), (3.7) and Property (ii) of Lemma 4 (see
below), we have that

H(X) ≤ 1
2

log(2πe)k +
1
2

log
∣∣∣∣Ω− 2

π
δδ

⊤
∣∣∣∣

= H(X0)+
1
2

log
(

1− 2
π

δ
⊤

Ω
−1

δ

)
= H(X0)+

1
2

log
(

1− 2
π

τ2

1+ τ2

)
,

since δ = Ωη/
√

1+η⊤Ωη and so δ
⊤

Ω
−1

δ = τ2/(1+ τ2). Therefore, we obtain a lower
bound for the following expected value

E [log{2Φ(τW )}]≥−1
2

log
(

1− 2
π

τ2

1+ τ2

)
.

Note from this last inequality that E [log{2Φ(τW )}] is always positive, because 2τ2/π(1+
τ2)< 1.

On the other hand, Gao and Zhang (2009) uses the Negentropy to quantify the non-
normality of a random variable X, which defined as

N(X) = H(X0)−H(X),

where X0 is a normal variable with the same variance as that of X. The Negentropy is
always nonnegative, and will become even larger as the random variable and is farther from
the normality. Then, the Negentropy of X ∼ SNk(ξ ,Ω,η) coincide with E[log{2Φ(τW )}].
As is well-known, the entropy is a measure attributed to uncertainty of information, or a
randomness degree of a single variable. Therefore, the Negentropy measures the departure
from the normality of the distribution of the random variable X. To determine a symmetric
difference of a normal random variable with respect to its skewed version, i.e., that preserves
the location and dispersion parameters but incorporates a shape/skewness parameter, the J
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divergence presented in the Section 1.3 is a useful tool to analyze this fact.

Rényi entropy and complexity measure

The next Proposition 5 allows to compute the Rényi entropy and complexity measure of
a SN random variable.

Proposition 5. Let ZZZ ∈ Rk be a random vector with pdf given by (2.4). Then:

∫
Rk
[ f (zzz)]αkzzz = ψα,d(Ω)

Φα+1(0;0,Ω̃)

Φ1(0;0,ω)
, α ∈ N, α > 1, (3.8)

where
ψα,k(Ω) =

2α

αk/2 [(2π)k|Ω|](1−α)/2,

Ω̃ = Iα+1 + ∥η̃∥2D̃⊤D̃, D̃ = (1α ,∥η̃∥)⊤, 1α is the α-dimensional vector of ones, ω =

1+∥η̃∥4, ∥η̃∥= η̃
⊤

η̃ and η̃ = α−1/2Ω
1/2

η .

By (1.6) and (3.8), the Rényi entropy of a random variable ZZZ ∼ SNk(µ,Ω,η) is retrieved.
Taking η = 0 in (3.8), the Rényi entropy of the normal distribution given by (1.8) is obtained.
Lemma 2 allows the computing of the expected value of the normal cdf. Considering the
standarised CSN variable in (2.18), Proposition 5 is solved by (2.19), by setting ν = 0 and
A = Ik, with k = s = 1. However, the case ν ̸= 0 and A ̸= Ik, k > 1, is still an open problem
and, it is useful to find the Rényi entropy for CSN distributions.

Corollary 1. Let ZZZ ∼ SN1(µ,Ω,η), ZZZN ∼ N1(µ,Ω), ∥η̃∥= η̃
⊤

η̃ and η̃ = Ω
1/2

η . Then,

(i) Rα(ZZZ) = Rα(ZZZn)−Nα(ZZZ), α ∈ N, α > 1, where

Nα [ f ] =
1

α −1
log
[

2α Φα+1(0;0,Ω̃)

Φ1(0;0,ω)

]
is the so-called Negentropy, Rα(ZZZ) is given by (1.8), and Ω̃ and ω are defined as in
Proposition 5.

(ii) lim
α→1

Nα(ZZZ) = E{log[2Φ1(∥η̃∥W )]}.

(iii) H(ZZZ) = H(ZZZN)−E{log[2Φ1(∥η̃∥W )]},

where H(ZZZN) is given by (1.9) and W ∼ SN1(0,1,∥η̃∥).

(iv) H(ZZZN)− log(4e)≤ H(ZZZ)≤ H(ZZZN), ∀η .
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Contreras-Reyes and Arellano-Valle (2012) define the negentropy as the departure
from normality of the distribution of ZZZ. Therefore, the SN Rényi entropy corresponds
to the difference between normal Rényi entropy and negentropy, that depends on the
skewness parameter η . On the another hand, by setting ν = 0 and A = Ik in (3.24)
with k = s = 1, we obtain the property (ii) of Corollary 1. By properties (iii) and (iv),
−0.967 ≤ H(ZZZN)− log(4e) ≤ H(ZZZ) because, the minimum value of normal Shannon en-
tropy is obtained for k = 1 and, 0 ≤ E{ln[2Φ1(∥η̃∥W )]} ≤ 2.386, for all η . In addition,
Contreras-Reyes and Arellano-Valle (2012) reported a maximum value of this expected value
equal to 2.339, using numerical approximations. Considering (1.6), (1.11) and (3.8); the
complexity measure for SN distribution is obtained.

Cross-Entropy, KL and J divergences

To simplify the computation of the KL divergence, the following properties of the SN
distribution are useful.

Lemma 4. Let ZZZ ∼ SNk(ξ ,Ω,η), and consider the vector δ = Ωη/
√

1+η⊤Ωη . Then:

(i) ZZZ d
= ξ +δ |U0|+U, where U0 ∼ N(0,1) and U ∼ Nk(0,Ω−δδ

⊤) and they are inde-
pendent;

(ii) E(ZZZ) = ξ +
√

2
π

δ , var(ZZZ) = Ω− 2
π

δδ
⊤;

(iii) For every vector a ∈Rk and symmetric matrix B ∈Rk×k,

E{(ZZZ −a)⊤B(ZZZ −a)}= tr(BΩ)+(ξ −a)⊤B(ξ −a)+2

√
2
π
(ξ −a)⊤Bδ ;

(iv) For every vectors η̃ , ξ̃ ∈Rk,

η̃
⊤(ZZZ − ξ̃ )∼ SN1

η̃
⊤(ξ − ξ̃ ), η̃⊤

Ωη̃ ,
η̃
⊤

δ√
η̃
⊤

Ωη̃ − (η̃⊤
δ )2

 .

The calculus of the CE CH(X,Y) when Y ∼ SNk(ξ 2,Ω2,η2) and X ∼ SNk(ξ 1,Ω1,η1),
require of the expectation of the functions (X−ξ 2)

⊤Ω
−1
2 (X−ξ 2) and log[Φ{η⊤

2 (X−ξ 2)}].
Therefore, the properties (iii) and (iv) in Lemma 4 allow the simplification of the computations
of these expected values as is shown in the proof of the lemma given next, and where the
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following SN random variables will be considered:

Wi j ∼ SN1

η
⊤
i (ξ j −ξ i),η

⊤
i Ω jη i,

η⊤
i δ j√

η⊤
i Ω jη i − (η⊤

i δ j)2

 , (3.9)

where δ j =Ω jη j/
√

1+η⊤
j Ω jη j for j = 1,2. Note for i= j that Wii ∼ SN1

(
0,η⊤

i Ωiη i,(η
⊤
i Ωiη i

)1/2
),

with i = 1,2. Also, we note that (3.9) can be expressed as

Wi j
d
= η

⊤
i (ξ j −ξ i)+(η⊤

i Ω jη i)
1/2Ui j,

where Ui j ∼ SN1(0,1,τi j), with τi j = η⊤
i δ j/

√
η⊤

i Ω jη i − (η⊤
i δ j)2.

Lemma 5. The CE between X ∼ SNk(ξ 1,Ω1,η1) and Y ∼ SNk(ξ 2,Ω2,η2) is given by

CH(X,Y) = CH(X0,Y0)+

√
2
π
(ξ 1 −ξ 2)

⊤
Ω

−1
2 δ 1 −E[log{2Φ(W21)}],

where

CH(X0,Y0) =
1
2

{
k log(2π)+ log |Ω2|+ tr(Ω2

−1
Ω1)+(ξ 1 −ξ 2)

⊤
Ω

−1
2 (ξ 1 −ξ 2)

}
is the CE between Y0 ∼ SNk(ξ 2,Ω2,0) and X0 ∼ SNk(ξ 1,Ω1,0), and by (3.9)

W21 ∼ SN1

η
⊤
2 (ξ 1 −ξ 2),η

⊤
2 Ω1η2,

η⊤
2 δ 1√

η⊤
2 Ω1η2 − (η⊤

2 δ 1)2

 .

Proposition 6. The KL divergence between X ∼ SNk(ξ 1,Ω1,η1) and Y ∼ SNk(ξ 2,Ω2,η2)

is given by

K(X,Y) = K(X0,Y0)+

√
2
π
(ξ 1 −ξ 2)

⊤
Ω

−1
2 δ 1 +E[log{2Φ(W11)}]−E[log{2Φ(W21)}],

where

K(X0,Y0) =
1
2

{
log
(
|Ω2|
|Ω1|

)
+ tr(Ω−1

2 Ω1)+(ξ 1 −ξ 2)
⊤

Ω
−1
2 (ξ 1 −ξ 2)− k

}
is the KL-divergence between X0 ∼ SNk(ξ 1,Ω1,0) and Y0 ∼ SNk(ξ 2,Ω2,0), and the Wi j

defined as in (3.9).
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The proofs of Lemma 5 and Proposition 6 are included in Appendix A. In the following
proposition, we give the J divergence between two SN distributions. Its proof is immediate
from (1.15) and Proposition 6.

Proposition 7. Let X ∼ SNk(ξ 1,Ω1,η1) and Y ∼ SNk(ξ 2,Ω2,η2). Then,

J(X,Y) = J(X0,Y0)+

√
2
π
(ξ 1 −ξ 2)

⊤(Ω−1
2 δ 1 −Ω

−1
1 δ 2)

+E[log{2Φ(W11)}]−E[log{2Φ(W12)}]
+E[log{2Φ(W22)}]−E[log{2Φ(W21)}],

where

J(X0,Y0) =
1
2
{tr(Ω1Ω

−1
2 )+ tr(Ω−1

1 Ω2)+2(ξ 1 −ξ 2)
⊤(Ω−1

1 +Ω
−1
2 )(ξ 1 −ξ 2)−2k}

is the J divergence between the normal random vectors X0 ∼ SNk(ξ 1,Ω1,0) and Y0 ∼
SNk(ξ 2,Ω2,0), and by (3.9) we have that

W11 ∼ SN1

(
0,η⊤

1 Ω1η1,(η
⊤
1 Ω1η1)

1/2
)
,

W21 ∼ SN1

η
⊤
2 (ξ 1 −ξ 2),η

⊤
2 Ω1η2,

η⊤
2 δ 1√

η⊤
2 Ω1η2 − (η⊤

2 δ 1)2

 ,

W12 ∼ SN1

η
⊤
1 (ξ 2 −ξ 1),η

⊤
1 Ω2η1,

η⊤
1 δ 2√

η⊤
1 Ω2η1 − (η⊤

1 δ 2)2

 ,

W22 ∼ SN1

(
0,η⊤

2 Ω2η2,(η
⊤
2 Ω2η2)

1/2
)
.

In that follows we present the KL-divergence and J-divergence of some particular cases.
We start considering that case where Ω1 = Ω2 and η1 = η2. Hence, the KL and J divergences
compares the location vectors of two SN distributions, which is essentially equivalent to
comparing their mean vectors. For this case we also have that δ 1 = δ 2, Wii

d
= (η⊤Ωη)1/2W ,

W12
d
=−η⊤(ξ 1−ξ 2)+(η⊤Ωη)1/2W and W21

d
= η⊤(ξ 1−ξ 2)+(η⊤Ωη)1/2W , where W ∼

SN1(0,1,(η⊤Ωη)1/2). With this notation, the results in Propositions 6 and 7 are simplified
in this case as follows.

Corollary 2. Let X ∼ SNk(ξ 1,Ω,η) and Y ∼ SNk(ξ 2,Ω,η). Then,

K(X,Y) = K(X0,Y0)+

√
2
π
(ξ 1 −ξ 2)

⊤
Ω

−1
δ

+E[log{2Φ(τW )}]−E[log{2Φ(γ + τW )}],
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J(X,Y) = J(X0,Y0)+2E[log{2Φ(τW )}]−E[log{2Φ(τW − γ)}]
−E[log{2Φ(τW + γ)}],

where

K(X0,Y0) =
1
2

{
(ξ 1 −ξ 2)

⊤
Ω

−1(ξ 1 −ξ 2)− k+1
}

and

J(X0,Y0) = 2(ξ 1 −ξ 2)
⊤

Ω
−1(ξ 1 −ξ 2)

are, respectively, the KL and J divergences between X0 ∼ SNk(ξ 1,Ω,0) and Y0 ∼ SNk(ξ 2,Ω,0),
τ = (η⊤Ωη)1/2, γ = η⊤(ξ 1 −ξ 2) and W ∼ SN1(τ).

When ξ 1 = ξ 2 and η1 = η2, the KL and J divergence measures compares the dispersion
matrices of two SN distributions, which is equivalent to compare their covariance matrices.
For this case we have also that W11

d
= W21 and W12

d
= W22. Consequently, the KL and J

divergences does not depend on the skewness/shape vector η , i.e., it reduces to the respective
KL-divergence and J-divergence between two multivariate normal distribution with the same
mean vector but different covariance matrices, as is established next.

Corollary 3. Let X ∼ SNk(ξ ,Ω1,η) and Y ∼ SNk(ξ ,Ω2,η). Then,

K(X,Y) = K(X0,Y0) =
1
2

{
log
(
|Ω2|
|Ω1|

)
+ tr(Ω−1

2 Ω1)− k
}
,

J(X,Y) = J(X0,Y0) =
1
2
{tr(Ω1Ω

−1
2 )+ tr(Ω−1

1 Ω2)−2k},

where X0 ∼ SNk(ξ ,Ω1,0) and Y0 ∼ SNk(ξ ,Ω2,0).

Finally, if ξ 1 = ξ 2 and Ω1 = Ω2, then the KL divergence and J divergence compares the
skewness vectors of two SN distributions, which again is equivalent to comparing their mean
vectors.

Corollary 4. Let X ∼ SNk(ξ ,Ω,η1) and Y ∼ SNk(ξ ,Ω,η2). Then,

K(X,Y) = E[log{2Φ(W11)}]−E[log{2Φ(W21)}],
J(X,Y) = E[log{2Φ(W11)}]−E[log{2Φ(W12)}]

+E[log{2Φ(W22)}]−E[log{2Φ(W21)}],

where

W11 ∼ SN1

(
0,η⊤

1 Ωη1,(η
⊤
1 Ωη1)

1/2
)
,
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W21 ∼ SN1

0,η⊤
2 Ωη2,

η⊤
2 δ 1√

η⊤
2 Ωη2 − (η⊤

2 δ 1)2

 ,

W12 ∼ SN1

0,η⊤
1 Ωη1,

η⊤
1 δ 2√

η⊤
1 Ωη1 − (η⊤

1 δ 2)2

 ,

W22 ∼ SN1

(
0,η⊤

2 Ωη2,(η
⊤
2 Ωη2)

1/2
)
.

J divergence between the multivariate skew-normal and normal distributions

By letting η1 = η and η2 = 0 in Proposition 7, we have the J-divergence between a mul-
tivariate skew-normal and normal distributions, J(X,Y0) say, where X ∼ SNk(ξ ,Ω,η) and
Y0 ∼ SNk(ξ ,Ω,0). For this important special case, we find in Corollary 4 that J(X0,Y0) = 0,
the random variable W21 and W22 are degenerate at zero, and W11 = (η⊤Ωη)1/2W , with
W ∼ SN1(0,1,(η⊤Ωη)1/2), and W12 = (η⊤Ωη)1/2W0, with W0 ∼ N1(0,1). This proves the
following results.

Corollary 5. Let X ∼ SNk(ξ ,Ω,η) and Y0 ∼ SNk(ξ ,Ω,0). Then,

J(X,Y0) = E[log{2Φ(τW )}]−E[log{2Φ(τW0)}],

where τ = (η⊤Ωη)1/2, W ∼ SN1(0,1,τ) and W0 ∼ N1(0,1).

It follows from Corollary 5 that the J-divergence between the multivariate skew-normal
and normal distributions is simply the J-divergence between the univariate SN1(0,τ2,τ) and
N1(0,τ2) distributions. Also, considering that E[log{2Φ(τW )}] =E[{2Φ(τW0)} log{2Φ(τW0)}],
an alternative way to compute the J(X,Y0)-divergence is

J(X,Y0) = E[{2Φ(τW0)−1} log{2Φ(τW0)}]. (3.10)

It is interesting to notice that for τ = 1 in (3.10) we have J(X,Y0) = E{(2U0−1) log(2U0)},
where U0 is a random variable uniformly distributed on (0,1), or J(X,Y0) = E{U log(1+
U)}, with U being uniformly distributed on (−1,1). The following remark is suitable when
used to compute the expected value E[log{2Φ(Z)}] for Z skew-distributed.

Remark 3. If Z ∼ SN(ξ ,ω2,α), ω > 0, α ∈R, then

E[log{2Φ(Z)}] = E[2Φ(αZ0) log{2Φ(ωZ0 +ξ )}]
= E[Φ(−αS0) log{2Φ(−ωS0 +ξ )}]
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+E[Φ(αS0) log{2Φ(ωS0 +ξ )}],

where Z0 ∼ N1(0,1), S0 = |Z0| ∼ HN1(0,1), and HN1 is the univariate half-normal distribu-
tion with density 2φ(s), s > 0. Since the function log[2Φ(ωz+ξ )] is negative on (−∞,0) and
non-negative on [0,∞), the last expression is more convenient for the numerical integration.

Jensen-Shannon distance

The next Proposition 8 allows to compute the Jensen–Shannon distance between two SN
random variables.

Proposition 8. Let X ∼ SN1(η1) and Y ∼ SN1(η2) be two SN random variables. Then, the
JS distance between X and Y is

JS(X ,Y ) =
1
2

E
[

log
{

2Φ(η1x)
Φ(η1x)+Φ(η2x)

}]
+

1
2

E
[

log
{

2Φ(η1y)
Φ(η1y)+Φ(η2y)

}]
.

3.2.2 Finite mixture of multivariate skew-normal distributions

Mixture models are in high demand for machine-learning analysis, due to their computational
tractability and for offering a good approximation for continuous densities McLachlan
and Peel (2000). In addition, mixture models are an important statistical tool for many
applications in clustering (Celeux and Soromenho, 1996, Jenssen et al., 2003), discriminant
analysis Amoud et al. (2007), image processing and satellite imaging (Caillol et al., 1997,
Carreira-Perpinán, 2000). Celeux and Soromenho (1996) consider a Maximum Likelihood
(ML)–based entropy criterion to estimate the number of clusters arising from a mixture model,
and compare it with the classical AIC and BIC information criteria. Carreira-Perpinán (2000)
deal with the problem of finding all modes of multi-dimensional data, assuming a mixture of
normal densities. Specifically, he uses the gradient as a mode locator and for controlling the
significance modes thus obtained, by measuring the sparseness of the densities mixture via
the entropy. However, so far no analytical expressions, which consider bounds of Shannon
entropy for the normal mixture entropy exist. Similarly, in the case of KL divergence
an analytic evaluation of the differential entropy is impossible, too. Thus, approximate
calculations become inevitable (Durrieu et al., 2012, Huber et al., 2008, Nielsen and Sun,
2016). Jenssen et al. (2003) use the Rényi entropy (Rényi, 1970) as a similarity measure
between clusters. They consider the Parzen window density estimation for differential Rényi
entropy clustering to identify the worst cluster and subsequently reduce the overall number
of clusters by one.
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Predominantly, the entropy applications mentioned above have been developed in the nor-
mal context, but several results of both Shannon and Rényi entropies for various multivariate
distributions (see e.g. Contreras-Reyes, 2015, Zografos and Nadarajah, 2005) actually exist.
Here, we consider the novel class of finite mixture of multivariate skew-normal mixture
(FMSN) models (Frühwirth-Schnatter and Pyne, 2010). This class provides some advantages
over the normal mixtures. For instance, the normal components allow an arbitrarily close
modeling of any distribution by increasing the number of components and, in the context of
supervised learning, groups of observations represented by asymmetrically distributed data
can lead to wrong classification (Frühwirth-Schnatter and Pyne, 2010). The components of
skew-normal mixture models however capture skewness due to their flexibility. Specifically,
we present practical results of upper and lower bounds of Shannon and Rényi entropies for
FMSN distributions in Section 3.2.2. Section 3.2.2 also presents theoretical results of upper
and lower bounds of these concepts. For the sake of simplicity, we denote the Shannon
entropy and negentropy of a FMSN variable (Y; θ̃θθ ,π) as H[Y; θ̃θθ ] and N[Y; θ̃θθ ], respectively.

Shannon entropy bounds

As in the normal case, the Shannon entropy of mixture of SN distributions does not have
a closed form. However, the following proposition presents some lower and upper bounds as
an approximation of the entropy of finite mixture of SN densities.

Proposition 9. Consider the FMSN density of (Y; θ̃θθ ,π) defined in (2.9). Then, the following
inequalities are accomplished:

(i) Alower ≤ H[Y; θ̃θθ ]≤ Aupper,

(ii) Blower ≤ H[Y; θ̃θθ ]≤ Bupper,

where

Aupper =
1
2

ln{(2πe)k|Σ|},

Alower = Aupper −
m

∑
i=1

πi N[Y;θθθ i],

Bupper = Alower −
m

∑
i=1

πi ln πi,

Blower = −
m

∑
i=1

πi ln

(
m

∑
s=1

πs

∫
∞

−∞

f (t;η i) f (t;ηs)dt

)
,
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with N[Y;θθθ i] =E [ln{2Φ1(∥η̃ i∥Wi)}] =
∫

∞

−∞
f (wi;∥η̃ i∥)ln{2Φ1(∥η̃ i∥wi)}dwi, Wi ∼ SN1(∥η̃ i∥),

∥η̃ i∥= η⊤
i Ωiη i, and Σ = Var[Y] is defined by (2.12).

For the case m = 1, Contreras-Reyes and Arellano-Valle (2012) consider the upper bound
of the property (i) of Proposition 9 to approximate the Shannon entropy of an SN distribution
using the property (ii) of Proposition 9. In this Proposition 9(ii), the left side includes an
integral related to a product of two SN densities. When i = s, these integrals correspond to
an L2-norm and are represented by the quadratic Rényi entropy (Contreras-Reyes, 2015).
For the case i ̸= s, the integral does not have explicit form and requires numerical methods
to be computed. Moreover, the right side corresponds to the sum of the entropy of a
multinomial density with parameters π1, . . . ,πm and a second term based on the weights and
shape parameters of the SN density. Other refinements can be found in Huber et al. (2008).
These are suitable for cases of several components (for example, m ≫ 5), i.e., a SN density
consisting of several and well separated clusters.

A lower bound can be found for H[Y; θ̃θθ ] using the L2-norm of an FMSN density and
Jensen’s inequality (Cover and Thomas, 2006):

H[Y; θ̃θθ ]≥−2 ln∥p(y; θ̃θθ ,π)∥2 =− ln
∫
Rk

p(y; θ̃θθ ,π)2dy. (3.11)

Considering (1.6), (3.11) and Proposition 2(i)–(ii), we obtain the additional inequalities
R2[Y; θ̃θθ ]≤ H[Y; θ̃θθ ] and

Blower < Alower < Bupper < Aupper. (3.12)

The next section provides upper and lower bounds for Rényi entropy of FMSN random
vectors.

Rényi entropy bounds

For the sake of simplicity, we define the following function in terms of Rényi entropy
and α as

Pα [Y; θ̃θθ ] = e(1−α)Rα [Y;θ̃θθ ], 0 < α < ∞, α ̸= 1,

for the calculus of the bounds of
∫
Rk p(y; θ̃θθ ,π)αdy. By applying the function ln(·)/(1−α)

to these integrals, we have the Rényi entropy of FMSN density.
As in the Shannon entropy case, the Rényi entropy can be upper bounded in terms of

the dispersion matrix of the finite mixture random variable. Sánchez-Moreno et al. (2011)
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derived a multidimensional upper bound using a variational approach,

Rα [Y; θ̃θθ ]≤ d
2

ln
(
|Λ|
d

)
+Fk(α), (3.13)

with Λ =Var[Y] defined in (2.12),

Fk(α) =
k
2

ln
(

πb
α −1

)
+

1
α −1

ln
(

b
2α

)
+ lnΓ

(
α

α −1

)
− lnΓ

(
b

2(α −1)

)
,

b = (2+ k)α − k, θθθ 0 = (0, Ik), and W0 ∼ Nk(0, Ik). H[W0;θθθ 0] is obtained using the Propo-
sition 3.

The right side of the inequality (3.13) is equivalent to the maximum Shannon entropy of
Proposition 9. The first term depends on the dispersion matrix and the shape parameters, and
the second only depends on the αth order and dimension k.

The next Lemma presents a useful result to compute the lower bound for Rényi entropy
of an FMSN random vector Y in terms of each component.

Lemma 6. Consider the FMSN density of (Y;θθθ ,π) defined in (2.9). Then,

∫
Rk

p(y; θ̃θθ ,π)αdy ≥ Pα [Y;θθθ m]+
m−1

∑
i=1

{(
i

∑
k=1

πk

)α (
Pα [Y;θθθ i]−Pα [Y;θθθ i+1]

)}
,

with 0 < α < ∞, α ̸= 1, and m > 1.

Some theoretical results

In this section, we develop some bounds and asymptotic approximation of Rényi entropy
for FMSN densities. Considering the multinomial (MN) theorem (see e.g. Bennett, 1986) for
m sums, the equality

∫
Rk

p(y; θ̃θθ ,π)αdy =
∫
Rk

[
m

∑
i=1

πi f (y;θθθ i)

]α

dy

(MN)
=

∫
Rk

∑
ki∈A

α!
k1! · · ·km!

m

∏
i=1

[πi f (y;θθθ i)]
kidy (3.14)

is accomplished under the condition

∑
ki∈A

α!
k1! · · ·km!

= mα , (3.15)
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with 0 < α < ∞, α ̸= 1, and A = {ki ∈ N : ki > 0,∑m
i=1 ki = α; i = 1, . . . ,m}. By choosing

αi = ki/α , ∑
m
i=1 αi = α−1

∑
m
i=1 ki = 1. Then, by applying Stirling’s approximation given by

Jaynes (1982) in (3.14), the equality

1
α

ln Uα(α̃|Q) = H(α̃|Q)+O(α−1 ln α), (3.16)

is derived with

Uα(α̃|Q) =
α!

k1! · · ·km!

m

∏
i=1

Qi(y)ki, H(α̃|Q) =−
m

∑
i=1

αi ln
(

αi

Qi(y)

)
,

α̃ = (α1, . . . ,αm), and Qi(y) = πi f (y;θθθ i).

Lemma 7. Considering the condition (3.15), the approximation

∫
Rk

p(y; θ̃θθ ,π)αdy ≈ ∑
ki∈A

[
m

∏
i=1

(
πi

αi

)ki
]

Pki[Y;θθθ i]

is accomplished as α → ∞.

The next Lemma presents two upper bounds for Rényi entropy of an FMSN random
vector Y in terms of each m-component using the multinomial theorem, given that the
components and weights of the mixture models are non-negative.

Lemma 8. Consider the FMSN density of (Y; θ̃θθ ,π) defined in (2.9). Then, the inequalities

(i)
∫
Rk

p(y; θ̃θθ ,π)αdy ≤ ∑
ki∈A

α!
k1! · · ·km!

(
m

∏
i=1

π
ki
i

)
exp

(
1−α

m

m

∑
i=1

Rki[Y;θθθ i]

)

(ii)
∫
Rk

p(y; θ̃θθ ,π)αdy ≤ ∑
ki∈A

α!
k1! · · ·km!

(
m

∏
i=1

π
ki
i

)(
1
m

m

∑
i=1

Pki[Y;θθθ i]
ki

)m/α

are accomplished under the condition (3.15).

Given the condition 0 < α < ∞, α ̸= 1, the multinomial coefficients ki can not equal
zero, i.e., ∑

m
i=1 ki = α > 0. Then, the Rényi entropies Rki[Y;θθθ i] exist and can be obtained

using the property (ii) of Proposition 1 for α ∈ N, α > 1. This means that the inequalities of
Lemma 3 consider m individual Rényi entropies with integer order, whereas inequality (3.13)
considers orders with real values. In addition, Lemma 3 allow to determine an upper bound
for FMSN Rényi entropy in terms of Rki[Y;θθθ i] and Pki[Y;θθθ i], i = 1, . . . ,m; respectively.
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After the inequalities of Lemma 6 and 8 are derived, it is natural to look for an un-
derlying identity. We consider Proposition 3 of Bennett (1986) based on Abel’s iden-
tity and multinomial theorem. Let B be a set of multinomial coefficients defined as
B = {ks ∈ N : 0 < ks < α,∑m

i=1 ki = α, ks+1 = . . .= km = 0}. We have

p(y j;θθθ ,π)α =

[
m

∑
i=1

πi f (y j;θθθ i)

]α

=

(
m

∑
i=1

πi

)α

f (y j;θθθ m)
α +

m

∑
i=1

{(
i

∑
k=1

πk

)α (
f (y j;θθθ i)

α − f (y j;θθθ i+1)
α

)
∑

ks∈B

α!
k1! · · ·ks!

(
i

∏
s=1

π
ks
s

)[(
i−1

∏
s=1

f (y j;θθθ s)
ks

)
− f (y j;θθθ i)

α−ki

]}
.

By integrating the last equality in both sides and applying the condition ∑
m
i=1 πi = 1, we

obtain∫
Rk

p(y j;θθθ ,π)αdy j = Pα [Y j;θθθ m]+
m

∑
i=1

{(
i

∑
s=1

πs

)α (
Pα [Y j;θθθ i]−Pα [Y j;θθθ i+1]

)
∑

ks∈B

α!
k1! · · ·ks!

(
i

∏
s=1

π
ks
s

)[∫
Rk

(
i−1

∏
s=1

f (y j;θθθ s)
ks

)
dy j

−Pα−ki[Y j;θθθ i]

]}
, (3.17)

with the multinomial coefficients of B satisfying

∑
ks∈B

α!
k1! · · ·ki−1!

= (i−1)α , i = 1, . . . ,m. (3.18)

The equality (3.17) is difficult to compute, given that it does not have a more explicit
expression for the integral of products of the mixture densities. However, an alternative
inequality can be found using the Generalized Hölder (GH) inequality and the proof of
Lemma 6, with ps = (α − ki)/ks, s = 1, . . . , i−1, i = 1, . . . ,m. This ensures the assumptions
of ps given the condition (3.18). In contrast to condition (3.15), condition (3.18) corresponds
to the sum of i−1 multinomial coefficients ks, i.e., the sum is always less than mα of (3.15)
for any index i = 1, . . . ,m.
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3.2.3 Multivariate skew-t distribution

Shannon entropy and mutual information

Let ZZZ0 ∼ Tk(0, Ik,ν) and ZZZ ∼ STk(ξ ,Ω,η ,ν), we obtain directly from Proposition 1 that

H(ZZZ) = H(ZZZ0)−E

[
log

{
2T

(√
ν + k

ν +∥ZZZ0∥2 η̄
⊤ZZZ0;ν + k

)}]
, (3.19)

where H(ZZZ0) is given by formula (3.4). In order to compute the last factor in the skew-t (ST)
entropy (3.19) by integration in only one dimension, we need the following result whose
proof is given by Arellano-Valle (2010).

Lemma 9. Let ZZZ0 ∼ STk(0, Ik, η̄ ,ν). Then:√
ν + k

ν +∥ZZZ0∥2 η̄
⊤ZZZ0

d
=

√
ν + k∥η̄∥WST√

ν + k−1+W 2
ST

where WST ∼ ST1(0,1,∥η̄∥,ν + k−1).

Since for large values of ν the multivariate Student’s t, and hence the ST, distributions
converge to the normal and SN ones, respectively, it is straightforward to see from (3.19)
that the ST entropy converges to SN entropy for any values of η̄ as ν → ∞. The behavior of
this convergence and the respective entropies are simulated/reported for several values of
α = ∥η̄∥ and ν in Section 4.1.2.

Considering the Jensen’s inequality (Cover and Thomas, 2006, pp. 27), is possible to
found a lower bound for ST entropy. Since the ST density function is log-convex (Domínguez-
Molina and Rocha-Arteaga, 2007), we have

H(ZZZ) = E[log fZZZ(zzz)]≥− log E[ fZZZ(zzz)] =−2log ∥ fZZZ(zzz)∥2,

where ∥ ·∥2 denotes the L2-norm. However, if ZZZ is ST distributed, in order to found ∥ fZZZ(zzz)∥2,
additional characterizations of the Shannon entropy as the Rényi entropy are necessary.

For any density fX(x) of a random vector X ∈ Rk not necessary normal with zero mean
and variance-covariance matrix ∆ = E[XX⊤], the entropy of X is upper bounded as

H(X)≤ 1
2

log
{
(2πe)k|∆|

}
. (3.20)
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This means that the normal distribution maximises the entropy over the ST distribution with
the same variance (Cover and Thomas, 2006, pp. 663). For the ST case, by (3.20) and
property (i) of Lemma 10 (see below) we have that

H(ZZZ) ≤ 1
2

log{(2πe)k}+ 1
2

log
∣∣∣K2(ZZZ)Ω+ξ ξ

⊤+K1(ZZZ)
(

ξ δ
⊤+δξ

⊤
)∣∣∣ .

The following results are related with the marginal distributions from a multivariate ST
distribution. For the proof of the latter, see Arellano-Valle and Genton (2010). Let(

X
Y

)
∼ STn+m

((
ξ X
ξ Y

)
,

(
ΩXX ΩXY

ΩYX ΩYY

)
,

(
ηX
ηY

)
,ν

)
.

Then X ∼ STn(ξ X,ΩXX,ηX(Y),ν) and Y ∼ STm(ξ Y,ΩYY,ηY(X),ν). By Lemma 3 we have

E

[
log

{
2T

(√
ν + k

ν +∥ZZZ0∥2 η̄
⊤ZZZ0;ν + k

)}]
=E

log

2T

 √
ν + k∥η̄∥WST√

ν + k−1+W 2
ST

;ν + k




where WST ∼ ST1(0,1,∥η̄∥,ν + k−1). So, considering the above results, we can deduce the
mutual information index for the ST case as follows.

Proposition 10. Let(
X
Y

)
∼ STn+m

((
ξ X
ξ Y

)
,

(
ΩXX ΩXY

ΩYX ΩYY

)
,

(
ηX
ηY

)
,ν

)
.

Then:

I(X,Y) = I(X0,Y0)+E

{
log

(
CXY

CX(Y)CY(X)

)}
,

where X0 ∼ Tn(ξ X,ΩXX,ν), Y0 ∼ Tn(ξ Y,ΩYY,ν),

CXY = 2T

√
ν +n+m∥η̄XY∥WST√
ν +n+m−1+W 2

ST

;ν +n+m

 ,

CX(Y) = 2T

√
ν +n∥η̄X(Y)∥WST√

ν +n−1+W 2
ST

;ν +n

 ,

CY(X) = 2T

√
ν +m∥η̄Y(X)∥WST√

ν +m−1+W 2
ST

;ν +m

 ,
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WST ∼ ST1(0,1,∥η̄∥,ν + k−1), and I(X0,Y0) is given in (3.5).

Asymptotic cross-entropy and Kullback–Leibler divergence

We are interested in compute the CE for X ∼ STk(ξ 1,Ω1,η1,ν1) with respect to Y ∼
STk(ξ 2,Ω2,η2,ν2). The following two lemmas gives a useful properties for the calculus of
the CE between two ST variables, for the posteriorly calculus of KL divergence measure.

Lemma 10. Let ZZZ ∼ STk(ξ ,Ω,η ,ν) and δ = Ωη/
√

1+η⊤Ωη . Then:

(i) E[ZZZ] = ξ +K1(ZZZ)δ , for ν > 1,

Var[ZZZ] = K2(ZZZ)Ω+ξ ξ
⊤+K1(ZZZ)

(
ξ δ

⊤+δξ
⊤
)
, for ν > 2,

with K1(ZZZ) =
√

ν/2Γ(ν−1
2 )/Γ(ν

2 ) and K2(ZZZ) = ν

ν−2 .

(ii) Let X ∼ STk(ξ 1,Ω1,η1,ν1), Y ∼ STk(ξ 2,Ω2,η2,ν2), and Q2 = (x− ξ 2)
⊤Ω

−1
2 (x−

ξ 2). Then

E[Q2] = K2(X)tr(Ω−1
2 Ω1)+(ξ 1 −ξ 2)

⊤
Ω

−1
2 (ξ 1 −ξ 2)

+2K1(X)(ξ 1 −ξ 2)
⊤

Ω
−1
2 δ 1,

where tr(A) denotes the trace of the matrix A and δ 1 = Ω1η1/
√

1+η⊤
1 Ω1η1.

(iii) For every vectors η̃ , ξ̃ ∈Rk,

η̃
⊤(ZZZ − ξ̃ )∼ ST1

η̃
⊤(ξ − ξ̃ ), η̃⊤

Ωη̃ ,
η̃
⊤

δ√
η̃
⊤

Ωη̃ − (η̃⊤
δ )2

,ν

 .

The expected value of the quadratic form of Lemma 10(ii), is a very important property
of quadratic forms of ST distributions where it allows the computing of the CE between X
and Y. The following Lemma 11 provides the CE between two ST variables to obtain the KL
divergence.

Lemma 11. Let X ∼ STk(ξ 1,Ω1,η1,ν1) and Y ∼ STk(ξ 2,Ω2,η2,ν2). Then:

CH(X,Y)≈ 1
2

log{(2π)k|Ω2|}+
1
2

(
ν2 + k

ν2

)
E[Q2]−E

[
log
{

2T
(

η̃
⊤
2 (x−ξ 2);ν2 + k

)}]
,

(3.21)
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as ν2 → ∞, where η̃
⊤
2 = η⊤

2

√
ν2+k

ν2+Q2
, and E[Q2] is given by Lemma 10(ii).

The expected value of (3.21) is not directly computable because x∈Rk, i.e, the computing
of a multivariate integral is required. However, by replacing the terms ξ̃ = ξ 2, ν = ν2, and
η̃ = η̃2 in property (iii) of Lemma 10, it is possible to integrate the last term of (3.21) in
one dimension. Therefore, the asymptotic KL divergence for ST distributions is obtained by
replacing the formulas (3.4), (3.19) and (3.21) in the identity (1.14). This measure consider
an asymptotic behavior for CH(X,Y) as ν2 → ∞. Then, the density fY tend to be a SN
density and, K(X,Y) represents the divergence of a SN density fY from a ST density fX, for
large values of ν2 and; a ST density fY from a ST density fX, for small values of ν2. The
entropy H(X) given by (3.19) has an explicit form and only depends on Ω1 and ν1.

Given that the t distribution is a special case of ST distribution when η = 0 in (2.13),
is possible to obtain an asymptotic CE between two t distributions as follows. Taking
η1 = η2 = 0 in Lemma 10, we have X ∼ Tk(ξ 1,Ω1,ν1) and Y ∼ Tk(ξ 2,Ω2,ν2). Then:

CH(X,Y)≈ 1
2

log{(2π)k|Ω2|}+
1
2

(
ν2 + k

ν2

)
E[Q2], (3.22)

as ν2 →∞, ν1 > 2, where E[Q2] =K2(X)tr(Ω−1
2 Ω1)+(ξ 1−ξ 2)

⊤Ω
−1
2 (ξ 1−ξ 2). If ξ 1 = ξ 2;

(1.14), (3.4) and (3.22) yields

K(X,Y) ≈ 1
2

log
(
|Ω2|
|Ω1|

)
+

1
2

(
ν2 + k

ν2

)(
ν1

ν1 −2

)
tr(Ω−1

2 Ω1)

−
(

ν1 + k
2

)[
ψ

(
ν1 + k

2

)
−ψ

(
ν1

2

)]
. (3.23)

Exact expressions of KL and J divergences between a ST and t distribution has been
developed in Corollary 2.1 and Proposition 2.3 of Godoi et al. (2017), respectively.

3.3 Information measures for multivariate closed skew-normal
distributions

By (1.6) and (2.18), the Shannon entropy for CSN distributions is rewritten as

H(ZZZ) = −E{log [ fk,s(Y)]}

=
1
2

log |Ω|− log [Φs(0;ν ,A+D⊤
ΩD)]−E{ln[φk(ZZZ0)Φs(D̃⊤ZZZ0;ν ,A)]}

= H(ZZZ0)− log [Φs(0;ν ,A+D⊤
ΩD)]−E{log [Φs(D̃⊤ZZZ0;ν ,A)]}, (3.24)
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where ZZZ0 is the standardised normal random variable and H(ZZZ0) = (1/2) ln(2πe).

3.3.1 Multivariate skew-normal distribution

See Section 3.2.1.

3.3.2 Multivariate extended skew-normal distribution

The next Proposition 11 allows to compute the Rényi entropy and complexity measure of a
ESN random variable.

Proposition 11. Let ZZZ be a ESNk(µ,Ω,η ,τ), zzz ∈ Rk. Then:

∫
Rk
[ f (zzz)]αdzzz = ψα,d(Ω)E

{[
Φ1(W )

2Φ1(τ)

]α}
, α ∈ N, α > 1, (3.25)

where ψα,d(Ω) is defined as in Proposition 5 and W = η̃
⊤ZZZ0 + τ̃ ∼ ESN1(τ̃,∥η̃∥2,∥η̃∥,τ),

∥η̃∥= η̃
⊤

η̃ , and η̃ = Ω
1/2

η .

Corollary 6. Let ZZZ ∼ ESNd(µ,Ω,η ,τ), ZZZN ∼ Nd(µ,Ω) and W are defined as in Proposi-
tion 11. Then,

(i) Rα(ZZZ) = Rα(ZZZN)−Nα(ZZZ), α ∈ N, α > 1,

where

Nα(ZZZ) =
1

α −1
log
(

E
{[

Φ1(W )

Φ1(τ)

]α})
,

and Rα(ZZZ0) is given by (1.8).

(ii) Rα(ZZZ)≤ Rα(ZZZ0)+
α

1−α
log

[
Φ1(τ̃ + δ̃ ζ1(τ))

Φ1(τ)

]
,

where δ̃ = ∥η̃∥3/
√

1+∥η̃∥4.

(iii) H(ZZZ) = H(ZZZ0)−E
{

ln
[

Φ1(W )

Φ1(τ)

]}
.

(iv) H(ZZZ)≥ H(ZZZ0)+ log[Φ1(τ)]−Φ1

(
τ̃√

1+ηη⊤

)
and

H(ZZZ)≤ 1
2

log
[
(2πe)k

∣∣∣Ω−ζ1(τ)[τ +ζ1(τ)]δδ
⊤
∣∣∣] ,
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(v) lim
α→1

Nα(ZZZ) = E
{

log
[

Φ1(W )

Φ1(τ)

]}
.

Pourahmadi (2007) illustrated the behaviour of ζ1(τ), τ ∈ R. This function is strictly
decreasing for any τ ∈ R, tends to 0 when τ →+∞, and diverge when τ →−∞. For τ = 0,
the property (iv) of Corollary 6 becomes property (iii) of Corollary 1. By properties (iii)
of Corollary 6 and (ii) of Corollary 1, the negentropy of an extended skew-normal (ESN)
random vector is always larger than the negentropy of a SN random vector. Therefore,
we obtain the following relationship among the Shannon entropies of normal (H(ZZZ0)), SN
(H(ZZZN)), and ESN (H(ZZZ)) distributions: H(ZZZ0)≥ H(ZZZN)≥ H(ZZZ). Considering (1.6), (1.11)
and (3.25); the complexity measure for ESN distribution is obtained.

3.4 Information measures for generalized skew-normal dis-
tributions

Recent studies deal with the problem of measuring the disparity of a particular pdf from
the normal one (Stehlík et al., 2014). Typical technique to deal with the problem has been
exact expressions using information measures over particular distributions. For example,
Vidal et al. (2006) measure the sensitivity of the skewness parameter using the L1 distance
between symmetric and asymmetric distributions. Stehlík (2003, 2012) proven results on
decomposition of KL divergences in the gamma and normal family for divergence between
maximum likelihood estimator (MLE) of canonical parameter and canonical parameter of
regular exponential family. Gómez-Villegas et al. (2013) assessed the effect of kurtosis
deviations from normality on conditional distributions, such as the multivariate exponential
power family. Dette et al. (2017) characterizes the “disparity” between the skew-symmetric
models and their symmetric counterparts in terms of the total variation distance, which is
later used to construct priors. The paper provides additional insights, to those provided in
Vidal et al. (2006), on the interpretation of this distance, and also discusses the usage of the
KL divergence among several other distances.

Some recent applications of measuring the disparity of a particular pdf from the normal
one using negentropy include those by Gao and Zhang (2009) and Wang et al. (2014), where
negentropy method has been successfully applied to seismic wavelet estimation. Pires and
Ribeiro (2017) considered the negentropy to measure the distance of non-normal information
from normal one in independent components, with application to Northern Hemispheric
winter monthly variability of a high-dimensional quasi-geostrophic atmospheric model. Also,
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Pires and Hannachi (2017) used a tensorial invariant approximation of the multivariate
negentropy in terms of a linear combination of squared coskewness and cokurtosis. Then, the
method is applied to global sea surface temperature anomalies, after data anomalies being
tested through a non-Gaussian distribution.

In this section we develop procedure, based on KL divergences, to test the significance
of the skewness parameter in the Generalized SN (GSN) distributions, a flexible class of
distributions that includes the SN and normal ones as particular cases (Arellano-Valle et al.,
2017). We consider the Shannon entropy for the GSN subclass, i.e., the Shannon entropy of
Z ∼ GSN(η ;G,w). Thus, assuming a normal kernel in (2.24), we get the GSN-SE given by

H(Z) = H(Z0)−E (log [2G{w(Z;η)}]) , (3.26)

where H(Z0) = (1/2) log(2πe) is the Shannon entropy of Z0. It is assumed that a specific
skewness value η0 exists so that w(z;η0) = 0 and so G{w(z;η0)} = 1/2, thus recovering
symmetry at η = η0. Therefore, at η = η0, Z and Z0 have the same distribution and thus the
same Shannon entropy.

Let µz = E(Z) and σ2
z =Var(Z) be the mean and variance of Z ∼ GSN(η ;G,w), respec-

tively, which must constitute functions of the skewness parameter η . Since σ2
z = 1−µ2

z and
H(Z′

0) = logσz +H(Z0), we get from (1.5) that the negentropy of Z becomes

N(Z) =
1
2

log(1−µ
2
z )+E (log [2G{w(Z;η)}]) . (3.27)

Since at η = η0, we have by symmetry µz = 0 and w(Z;η0) = 0, so the negentropy in
this case is null, as expected. Clearly, Shannon entropy and negentropy depend on the
choice of the functions G(·) and w(·;η). In this Section, we consider both families of GSN
distributions for which η0 = 0, with w(z;0) = w(0;η) = 0 and w(−z;η) = w(z;−η), thus
following that −Z ∼ GSN(−η ;G,w) and recovering the normality at η = 0. Examples of
this type of functions are w(z;η) = ηu(z) and w(z;η) = u(ηz) for some odd function u(z),
with u(0) = 0. In this case, recalling that ηZ d

= τZτ , where Zτ ∼ GSN(τ;G,w), τ = |η |, and
“ d
=” denotes equality in distribution, we obtain

E (log [2G{w(Z;η)}]) = E (log [2G{w(Zτ ;τ)}]) , (3.28)

thus H(Z) = H(Zτ) and N(Z) = N(Zτ). That is, the entropy and negentropy of Z ∼ SN(η)

depend on the skewness parameter η only through its absolute value τ = |η |.
We have interest in both KL and J divergences for a GSN distribution with respect to the

normal distribution. That is, assuming in (1.13) and (1.15) that Z1 = Z ∼ GSN(η ;G,w) and
Z2 = Z0. In this case, remembering that ηZ d

= τZτ , where Zτ ∼ GSN(τ;G,w) and τ = |η |,
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we have K(Z,Z0) = K(Zτ ,Z0) and K(Z0,Z) = K(Z0,Zτ), with:

K(Zτ ,Z0) = E (log [2G{w(Zτ ;τ)}]) and K(Z0,Zτ) =−E (log [2G{w(Z0;τ)}]) . (3.29)

Therefore, J(Z,Z0) = J(Zτ ,Z0), with:

J(Zτ ,Z0) = E (log [2G{w(Zτ ;τ)}])−E (log [2G{w(Z0;τ)}]) . (3.30)

We also develop asymptotic expansions of the J divergence for the SN and MSN dis-
tributions from the normal distribution. To do this, we consider the following prelimi-
nary result, which proof stems from (3.29) and (3.30) by using the Taylor expansion of
ζ (z;τ) = log[2G{w(z;τ)}] at z = 0, and also because of the facts that (a) all moments of
Zτ ∼ GSN(τ;G,w) are finite, and (b) Zτ and Z0 contain the same even moments.

Lemma 12. Consider the composite function ζ (z;τ) = log[2G{w(z;τ)}], τ > 0, by assuming
that both functions G(z) and w(z;τ) are infinitely differentiable, hence also ζ (z;τ) is infinitely
differentiable at z = 0. If Zτ ∼ GSN(τ;G,u), then:

K(Zτ ,Z0) =
∞

∑
i=1

ζ (i)(0;τ)

i!
E(Zi

τ), (3.31)

J(Zτ ,Z0) =
∞

∑
i=1

ζ (2i−1)(0;τ)

(2i−1)!
E(Z2i−1

τ ),

where ζ (i)(z;τ) is the ith derivative of ζ (z;τ). Moreover, from (3.31), the expressions (3.26)
and (3.27) for the Shannon entropy and negentropy of the GSN distributions have the forms:

H(Zτ) =
1
2

log(2πe)−
∞

∑
i=1

ζ (i)(0;τ)

i!
E(Zi

τ),

N(Zτ) =
1
2

log(1−µ
2
τ )+

∞

∑
i=1

ζ (i)(0;τ)

i!
E(Zi

τ),

respectively, where µτ = E(Zτ).

Notice in Lemma 12 that the coefficient ζ (i)(0;τ) depends on the derivatives of G(z)
and w(z;τ) at z = 0, which change for different GSN distributions. Moreover, since the
expansion of ζ (z;τ) emerges around z = 0 by assuming a fixed τ , the approximations may
not be reasonable for some values of τ .
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3.4.1 Skew-normal distribution

The function ζ (z;τ) = ζ0(τz) = log{2Φ(τz)} is also infinitely differentiable at z = 0, thus
admitting a Taylor expansion about zero. Therefore, since ζ (i)(z;τ) = τ iζi(τz), where
ζi(x) is the ith derivative of ζ0(x) = log{2Φ(x)}, the expansion (3.31) in Lemma 12 of
E{ζ (Zτ ;τ)}= E{ζ0(τZτ)}, Zτ ∼ SN(τ), becomes

E{ζ0(τZτ)}=
∞

∑
i=1

τ iκiµi

i!
, (3.32)

where the moments µi = E(Zi
τ) are given in Section 2.4.1 and the coefficients κi = ζi(0), i =

1,2, . . ., are related to the cumulants of the half-normal random variable V ∼
√

χ2
1 given by

K(t) = (1/2)t2+ζ0(t) (see also Azzalini and Capitanio, 1999, 2013). Let Km(0) = dm

dtm Kt |t=0

be the mth cumulant of V and clearly K1(0) = ζ1(0) = κ1, K2(0) = 1+ζ2(0) = 1+κ2, and
Km(0) = ζm(0) = κm, m = 3,4, . . .. Also, from (Azzalini and Capitanio, 1999, 2013), it
emerges that

ζ1(x) =
φ(x)
Φ(x)

,

ζ2(x) = −ζ1(x){x+ζ1(x)},
ζ3(x) = −ζ2(x){x+ζ1(x)}−ζ1(x){1+ζ2(x)},
ζ4(x) = −ζ3(x){x+ζ1(x)}−2ζ2(x){1+ζ2(x)}−ζ1(x)ζ3(x),

ζ5(x) = −ζ4(x){x+ζ1(x)}−3ζ3(x){1+ζ2(x)}−3ζ2(x)ζ3(x)−ζ1(x)ζ4(x),
...

Recalling that b =
√

2/π , the first five coefficients κi = ζi(0), i = 1, . . . ,5, are

κ1 = b,

κ2 = −κ
2
1 ,

κ3 = −2κ2κ1 −κ1,

κ4 = −2κ3κ1 −2κ
2
2 −2κ2,

κ5 = −2κ4κ1 −6κ3κ2 −3κ3,
...

Thus, by letting κ0 = 1, a recursive rule for these coefficients is obtained as follows:

κ1 = b,
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κ2i = −(2i−2)κ2i−2 −2
i

∑
j=1

(
2i−2
j−1

)
κ jκ2i− j +

(
2i−2
i−1

)
κ

2
i ,

κ2i+1 = −(2i−1)κ2i−1 −2
i

∑
j=1

(
2i−1
j−1

)
κ jκ2i− j+1, i = 1,2, . . . .

In summary, since the even moments of Zτ ∼ SN(τ) are also the even moments of Z0,
Eq. (3.32) can be rewritten as

E{ζ0(τZτ)} =
∞

∑
i=1

τ2iκ2i

(2i)!
µ2i︸ ︷︷ ︸

E{ζ0(τZ0)}

+
∞

∑
i=1

τ2i−1κ2i−1

(2i−1)!
µ2i−1︸ ︷︷ ︸

J(Zτ ,Z0)

.

Hence, considering also Eq. (2.27), we can compute for the SN case the results for the KL
and J divergences, Shannon entropy and negentropy given in Lemma 12 using the following
Proposition 12.

Proposition 12. Let Zτ ∼ SN(τ) and Z0 ∼ N(0,1). Then:

K(Zτ ,Z0) =
∞

∑
i=1

τ iκiµi

i!
, (3.33)

J(Zτ ,Z0) = b
∞

∑
i=1

κ2i−1δ 2i−1
τ

(2i−1)!

i

∑
m=1

ai(m)τ2m−1,

H(Zτ) =
1
2

log(2πe)−K(Zτ ,Z0),

N(Zτ) =
1
2

log{1− (bδτ)
2}+K(Zτ ,Z0),

where the coefficients ai(m), i = 1,2, . . ., are given in Section 2.4.1.

The next Proposition 13 allows to compute the Rényi entropy and complexity measure of
a TSN random variable.

Proposition 13. Let Z,W be a SN(µ,σ2,η) and T SN(µ,σ2,η), respectively, η ̸= 0. Then:

∫ b

a
[g(w)]αdw = 2ψα,1(σ

2)Φα+1(0;0,Ω̃)
[H(v)]b0

a0

([F(z)]ba)α
, (3.34)

where ψα,1(σ
2) is defined as in Proposition 5 with k = 1 and Ω = J; Ω̃ = Iα+1 + η̃2D̃⊤D̃,

η̃2 = ωη2/α , D̃ = (1α , η̃)⊤ and V ∼ CSN1,2(0, η̃2, B̃,0, I2) with cdf H(v), B̃ = (1, η̃)⊤,
a0 = η(a−µ)/ω and b0 = η(b−µ)/ω .
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Remark 4. By Lemma 2.2.1 of Genton (2004), H(v) is easily computable by a tri-variate
normal cdf as

H(v) =

Φ3

[(
v
0

)
;

(
0
0

)
,

(
η̃2 −η̃2B̃

−η̃2B̃⊤ I2 + η̃2B̃⊤B̃

)]
Φ2(0;0, I2 + η̃2B̃⊤B̃)

,

where η̃ and B̃ are defined as in Proposition 13.

Considering (1.6), (1.11) and (3.34); the complexity measure for TSN distribution is
obtained.

3.4.2 Modified skew-normal distribution

In the MSN case, G(w) = Φ(w) and w(z;τ) = τu(z) = τz/
√

1+ z2, both of which are
infinitely differentiable at z = 0. Thus, in Lemma 12 we have ζ (z;τ) = ζ0{τu(z)}, where
ζ0(x) = log{2Φ(x)} is also infinitely differentiable at z = 0. Thus, the series expansion of
E{ζ (Zτ ;τ)} = E[ζ0{τu(Zτ)}], Zτ ∼ MSN(τ), can be obtained from (3.31) for which we
need the derivatives of the composite function ζ0{τu(z)}= log[2Φ{τu(z)}]. Another way to
obtain these derivatives is to define random variable Z∗

τ = u(Zτ) = Zτ/
√

1+Z2
τ , and using

(3.32) with Zτ and µk = E(Zτ) replaced by Z∗
τ and µ∗

k = E{(Z∗
τ )

k}, respectively. Thus, we
obtain the series expansion

E{ζ0(τZ∗
τ )}=

∞

∑
i=1

τ iκi

i!
µ
∗
i .

From Lemma 12, the KL and J divergences, Shannon entropy and negentropy for the MSN
case can be computed using the following Proposition 14.

Proposition 14. Let Zτ ∼ MSN(τ) and Z0 ∼ N(0,1). Then:

K(Zτ ,Z0) =
∞

∑
i=1

τ iκi

i!
µ
∗
i , (3.35)

J(Zτ ,Z0) =
∞

∑
i=1

τ2i−1κ2i−1

(2i−1)!
µ
∗
2i−1,

H(Zτ) =
1
2

log(2πe)−K(Zτ ,Z0),

N(Zτ) =
1
2

log(1− [b{2ξ1(τ)−1}]2)+K(Zτ ,Z0).

In order to compute the quantities given by Proposition 14, we need to calculate the new
moments µ∗

i = E{(Z∗
τ )

i}, i = 1,2, . . .. Since Z∗
τ = Zτ/

√
1+Z2

τ is a random variable limited
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to the interval (−1,1), all its moments are finite. In particular, Z∗
τ clearly has the same even

moments as Z∗
0 = Z0/

√
1+Z2

0 . Moreover, from the Jacobian method, the pdf of Z∗
τ becomes

f ∗(u) =
2

(1−u2)3/2 φ

(
u√

1−u2

)
Φ(τu) , u ∈ (−1,1).

Hence, the ith moment of Z∗
τ is

µ
∗
i =

∫ 1

−1
ui f ∗(u)du, k = 1,2, . . . ,

which must be computed numerically.

3.5 J Divergence between generalized skew-normal distri-
butions

In the previous sections, SN and MSN distributions were compared with the normal dis-
tribution by means of the J divergence measure. As byproduct, we were also computing
the J divergence between the SN and MSN distributions, both with the same skewness
parameter. This allows measuring the distance between these distributions with different
w(z;η)’s. For this, we consider in Eq. (1.15) that Z1 ∼ SN(τ) and Z2 ∼ MSN(τ), and define

the random variables Z∗
i = Zi/

√
1+Z2

i for i = 0,1,2, where Z0 ∼ N(0,1). Let µi, j = E(Z j
i )

and µ∗
i, j = E{(Z∗

i )
j}, i = 0,1,2. Recall that µi,2 j = µ0,2 j and µ∗

i,2 j = µ∗
0,2 j for all j = 1,2, . . ..

Thus, using (1.15) and then the Taylor expansion of ζ0(x) = log{Φ(x)} around x = 0, Propo-
sition 15 is obtained:

Proposition 15. Let Z0 ∼ N(0,1), Z1 ∼ SN(τ) and Z2 ∼ MSN(τ). Define the random

variables Z∗
i = Zi/

√
1+Z2

i , i = 1,2. Then:

J(Z1,Z2) = E{ζ0(τZ1)}−E{ζ0(τZ∗
1)}+E{ζ0(τZ∗

2)}−E{ζ0(τZ2)}
= J(Z1,Z0)− J(Z∗

1 ,Z0)+ J(Z∗
2 ,Z0)− J(Z2,Z0),

where as before

J(Zi,Z0) =
∞

∑
j=1

τ
2 j−1 µi,2 j−1κ2 j−1

(2 j−1)!
,

J(Z∗
i ,Z0) =

∞

∑
j=1

τ
2 j−1 µ∗

i,2 j−1κ2 j−1

(2 j−1)!
, i = 1,2.
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Proposition 15 indicates that J divergence between SN and MSN distributions is decom-
posed to the divergences of the normal distribution with each of these distributions, which
depends only on their odd moments and cumulants.

3.6 Asymptotic tests for generalized skew-normal distribu-
tions

Let f (x;θθθ), x ∈ X , θ ∈ Θ, be the pdf of a regular parametric class of distributions, i.e.,
for which the sample space X does not depend on θθθ , the parametric space Θ is an open
subset of Rp, and the regularity conditions (i), (ii) (iii) stated in Salicrú et al. (1994) are
satisfied. As in Salicrú et al. (1994), we denote the KL divergence between f (x;θθθ) and
f (x;θθθ

′), θθθ , θθθ
′ ∈ Θ, by

K(θθθ ,θθθ ′) =
∫
X

f (x;θθθ) log
{

f (x;θθθ)

f (x;θθθ
′)

}
dx.

Consider the partition θθθ = (θθθ 1,θθθ 2), where θθθ 1 ∈ Θ1 ⊂Rr and θθθ 2 ∈ Θ2 = Θ∩Θc
1 ⊂Rp−r.

Let θθθ
′ = (θθθ 1,θθθ

0
2) and consider the null hypothesis H0 : θθθ 2 = θθθ

0
2 for a known θθθ

0
2 ∈ Θ∩Θc

1.
Let θ̂θθ = (θ̂θθ 1, θ̂θθ 2) and θ̂θθ

′ = (θ̂θθ 1,θθθ
0
2) be the (unrestricted) MLE of θθθ and θθθ

′, respectively,
both based on a random sample of size n from X with pdf f (x;θθθ). Under these conditions,
we have from part b) of Theorem 2 presented in Salicrú et al. (1994) that

2nK(θ̂θθ , θ̂θθ ′) = 2n
∫
X

f (x; θ̂θθ) log

{
f (x; θ̂θθ)

f (x; θ̂θθ
′)

}
dx d−→

n→∞
χ

2
p−r, ∀θθθ ∈ Θ, (3.36)

where “ d−→" denotes convergence in distribution and χ2
s denotes the chi-squared distribution

function with s degrees of freedom. From (3.36), the above null hypothesis can be tested by
the statistic 2nK(θ̂θθ , θ̂θθ ′), which is asymptotically chi-squared distributed with p−r degrees of
freedom. Specifically for large values of n, if we observe K(θ̂θθ , θ̂θθ ′) = K0, then H0 is rejected
at level α if P(χ2

p−r > 2nK0)≤ α .

One-sample case: Test for normality

The result in (3.36) can be applied for example to construct a normality test from the
KL divergence between a regular GSN distribution and the normal distribution. Specifically,
consider a random sample X1, . . . ,Xn from X ∼ GSN(µ,σ2,η ,G,w) and the null hypothesis
H0 : η = η0 under which G{w(z;η0)} = G(0) = 1/2, thus the GSN random variable X
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becomes a N(µ,σ2) random variable. Let θ̂θθ = (µ̂, σ̂2, η̂) be the MLE of θθθ = (µ,σ2,η) and
θ̂θθ
′ = (µ̂, σ̂2,η0). Therefore, under H0 : η = η0 we have

2nK(θ̂θθ , θ̂θθ ′) = 2nK(Zτ̂ ,Z0)
d−→

n→∞
χ

2
1 , (3.37)

where K(Zτ̂ ,Z0) is the MLE of K(Zτ ,Z0), which is defined in Eq. (3.31) of Lemma 1 and
depends only on τ̂ = |η̂ |. As stated in the introduction, normality is typically obtained from
the GSN class at η0 = 0 or equivalently τ0 = |η0|= 0.

Azzalini (1985), Arellano-Valle and Azzalini (2008) and Azzalini and Capitanio (2013)
recall on the singularity of SN FIM at η = 0, preventing the asymptotic distribution of
the above statistic tests. As suggested by Azzalini (1985), a solution to recover the non-
singularity of the information matrix under the symmetry hypothesis comes from the use
of the so-called centered parametrization defined in terms of the mean, variance and the
skewness parameters of the SN distribution (see also Arellano-Valle and Azzalini, 2008,
Chiogna, 1998). Otherwise, the FIM of the MSN model is non-singular at η = 0 (Arrué
et al., 2016). Thus, this model satisfies all the standard regularity conditions of Salicrú
et al. (1994), leading to consistence and asymptotic normality of the MLEs under the null
hypothesis of normality. Therefore, the MSN model serves to test the null hypothesis of
normality using (3.37). Hence, the symmetry null hypothesis H0 : τ = 0 is rejected at level
α if P(χ2

1 > 2nK0)≤ α , with K0 = K(Zτ̂ ,Z0).

Two-samples case

Consider two independent samples of sizes n1 and n2 from X1 and X2, respectively; where
θθθ , θθθ

′ ∈ Θ ⊂ Rp, and X1 and X2 have pdf’s f (x;θθθ 1) and f (x;θθθ 2), respectively. Suppose
partition θθθ i = (θθθ i1,θθθ i2), i = 1,2, and assume θθθ 21 = θθθ 11 ∈ Θ1 ⊂ Rr, so that θθθ i2 ∈ Θ∩Θc

1 ⊂
Rp−r, i = 1,2. Let θ̂θθ i = (θ̂θθ 11, θ̂θθ i2) be the MLE of θθθ i = (θθθ 11,θθθ i2), i = 1,2, which correspond
to the MLE of the full model parameters (θθθ 1,θθθ 2) under null hypothesis H0 : θθθ 21 = θθθ 11.
Thus, part b) of Corollary 1 in Salicrú et al. (1994) establishes that if the null hypothesis
H0 : θθθ 22 = θθθ 12 holds and n1

n1+n2
−→

n1,n2→∞
λ , with 0 < λ < 1, then

2n1n2

n1 +n2
K(θ̂θθ 1, θ̂θθ 2) =

2n1n2

n1 +n2

∫
∞

−∞

f (x; θ̂θθ 1) log

{
f (x; θ̂θθ 1)

f (x; θ̂θθ 2)

}
dx d−→

n1,n2→∞
χ

2
p−r. (3.38)

Thus, a test of level α for the above homogeneity null hypothesis consists of rejecting H0 if

2n1n2

n1 +n2
K(θ̂θθ 1, θ̂θθ 2)> χ

2
p−r,1−α ,



54 Information measures for symmetric and asymmetric distributions

where χ2
p−r,α is the αth percentile of the χ2

p−r-distribution.
Contreras-Reyes and Arellano-Valle (2012) considered the result of Kupperman (1957)

to develop an asymptotic test of complete homogeneity in terms of the J divergence between
two SN distributions. The SN distribution satisfies all the aforementioned regularity condi-
tions when skewness parameter η ̸= 0. Thus, considering this condition we can also apply
(3.36) and (3.38) to obtain, respectively, asymptotic tests with one or two samples of other
hypotheses not covered by Kupperman’s test.

Likelihood Radio Test

The Likelihood Radio Test (LRT) statistic (Chernoff, 1954) for a null hypotheses H0 :
θ ∈ Θ0 versus H1 : θ ̸∈ Θ0, Θ0 ⊂ Θ (the parametric space), is given by

LRT = 2{ℓ(θ̂θθ)− ℓ(θ̂θθ 0)},

where θ̂θθ is the unrestricted MLE of θθθ , θ̂θθ 0 is the MLE of θθθ under H0, and the log-likelihood
function ℓ(θθθ) for MSN distributions is

ℓ(η) =
n
2

log(2π)− 1
2

n

∑
i=1

z2
i +

n

∑
i=1

logζ0{ηu(zi)}, (3.39)

for shape parameter η and a random sample of size n from Z (Arrué et al., 2016).
As before, normality is typically obtained from the GSN class at η0 = 0. Because the

MSN distribution satisfies the standard regularity conditions (Arrué et al., 2016), the LRT
statistic is asymptotically χ2

s distributed under H0, with s = dim(Θ)−dim(Θ0) = 1 degrees
of freedom (Azzalini and Arellano-Valle, 2013). Hence, the p-value associated with the LRT
is computed as 1−χ2

s (LRT), where χ2
s (LRT) denotes the χ2

s -distribution function evaluated
at the observed value of the LRT statistic.

In order to test normality, we considered the particular null hypothesis H0 : η = 0 versus
H1 : η ̸= 0, with the rest of the parameters not specified. Therefore, by (3.39) the LRT
statistic is given by

LRT = 2

[
−1

2

n

∑
i=1

ẑ2
i +

1
2

n

∑
i=1

ẑ2
i0 +

n

∑
i=1

logζ0{η̂u(ẑi)}

]
,

where η̂ is the unrestricted MLE of η , ẑi and ẑi0 are the unrestrited and restricted MLE of
zi = (yi −µ)/σ , respectively; and the p-value is computed as 1−χ2

1 (LRT).



Chapter 4

Simulations

4.1 Skew-normal and skew-t distributions

4.1.1 Shannon and Rényi entropies

A convenient and fast method to compute the entropies presented in Proposition 3 and
Eq.(3.19) is based on the numerical integration QUADPACK (a Subroutine Package for Auto-
matic Integration) (Piessens et al., 1983) implemented in the integrate R (R Core Team,
2016) function. The results are shown in Figure 4.1 for the dimension k = 1, dispersion
matrix Ω = 1, skewness parameter α ∈ [0.1,20], integration interval [−103,103] and degrees
of freedom ν = 1,2, . . . ,185 to illustrate the entropies:

H(X) =
1
2
{1+ log(2π)}−E [log{2Φ(αWSN)}] , (4.1)

H(Y ) = − log

{
Γ
(

ν+1
2

)
Γ
(

ν

2

)√
νπ

}
+

ν +1
2

{
ψ

(
ν +1

2

)
−ψ

(
ν

2

)}
(4.2)

−E

[
log

{
2T

(√
ν +1

ν +W 2
ST

αWST ;ν +1

)}]
,

where X ,WSN ∼ SN1(α) and Y,WST ∼ ST1(0,1,α,ν).
We can see in Figure 4.1 that the numerical implementation suggests the convergence of

the integrals involved in (4.1) and (4.2). The QUADPACK method is more precise and efficient
in terms of computational time than other methods such as Monte Carlo.

The convergence of the ST entropy to the skew-normal entropy is obtained quickly for
values of ν ≥ 7. In other words, greater values of the marginal skew-t entropy are produced
by small values of ν . As expected, for the normal and Student-t’s marginal cases (α = 0), we
have that the entropy its maximized and decreasing for greater values of α . When α → ∞,
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the entropy tends to a constant and for α > 20, it is almost that of a half-normal distribution
already.

We also compare the numerical method based on QUADPACK routine with exact compu-
tation given by Proposition 5, for univariate SN Rényi entropy. The results are shown in
Table 4.1 for the dimension k = 1, Z ∼ SN1(0,1,η), skewness parameter α ∈ [0.2,6], and
α = 2, . . . ,6. We can see similar results for each Rényi entropy from the 5th to 7th decimal.
In Figure 4.3, we can see that Rényi entropies decrease when α increase and η decrease, i.e.,
when the SN tend to or is maximized by normal distribution.

4.1.2 Maximum entropy, Jeffrey’s and Kullback-Leibler divergences

Figure 4.2 shows in panel (a) several values of h(τ) = E[log{2Φ(τW )}] for τ = 0,1, . . . ,200.
It is interesting to notice that the maximum value of this expected value is approximately
equal to 2.339. In the panel (b) this figure shows the values of J-divergence between
X ∼ SN1(0,τ2,τ) and Y0 ∼ N(0,τ2) computed in (3.10) for τ = 0,1, . . . ,10.

Figure 4.4 illustrates the numerical behavior of the KL divergence between two univariate
SN distributions under different scenarios for the model parameters. More specifically, we
can observe from there the behavior of KL and J divergences given in Proposition 6 and
Corollaries 2, 3 and 4 for the univariate special cases described below.

1. X ∼ SN1(ξ1,ω
2,η) versus Y ∼ SN1(ξ2,ω

2,η):

K(X ,Y ) =
1
2

(
ξ1 −ξ2

ω

)2

+

√
2
π

γ√
1+ τ2

+E[log{2Φ(τW )}]

−E[log{2Φ(τW + γ)}],

J(X ,Y ) = 2
(

ξ1 −ξ2

ω

)2

+2E[log{2Φ(τW )}]−E[log{2Φ(τW − γ)}]

−E[log{2Φ(τW + γ)}],

where τ = ω|η |, γ = η(ξ1 −ξ2) and W ∼ SN1(τ).
The panels (a), (b) and (c) of Figure 4.4 show that this J divergence increases mainly

with the distance between the location parameters ξ1 and ξ2. Looking for K(X ,Y ) and panel
(c), we can observe that larger values of ω2 produce the smallest values of KL divergence,
independently of the values of η .
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2. X ∼ SN1(ξ ,ω
2
1 ,η) versus Y ∼ SN1(ξ ,ω

2
2 ,η):

K(X ,Y ) =
1
2

{
log
(

ω2
2

ω2
1

)
+

ω2
1

ω2
2
−1
}
,

J(X ,Y ) =
1
2

(
ω1

ω2
− ω2

ω1

)
,

where δ1 = ηω2
1/
√

1+η2ω2
1 . In the plot (d) of Figure 4.4 is illustrated this case for

ξ = η = 1.

3. X ∼ SN1(ξ ,ω
2,η1) versus Y ∼ SN1(ξ ,ω

2,η2):

K(X ,Y ) = E[log{2Φ(W11)}]−E[log{2Φ(W21)}],
J(X ,Y ) = E[log{2Φ(W11)}]−E[log{2Φ(W12)}]+E[log{2Φ(W22)}]

−E[log{2Φ(W21)}],

where Wi j ∼ SN1(0,τ2
i ,si jτ j), with τi = |ηi|ω and si j = sign(ηiη j), i, j = 1,2. The behavior

of this case is illustrated in panel (e) of Figure 4.4 for ξ = 1 and ω2 = 1. Finally, the panels
(f) and (g) of Figure 4.4 correspond to the KL divergence of Proposition 6 for k = 1.

The found approximated KL divergence of ST distributions is compared with numer-
ical methods for the univariate case. Figure 4.5 illustrates the numerical behavior (using
QUADPACK routine) of the exact and asymptotic KL divergences between two univariate
skew-t distributions for a fixed value ν1 = 5 and several values ν2 = 3, . . . ,150. Without loss
of generality, ξ1 = ξ2 = 0 is chosen in this study. It can be observed that the asymptotic
KL divergence tends to approximate the exact KL divergence when ν2 → ∞. Hence, this
allows the convergence of the CE formula in Lemma 11. Figure 4.6 shows the behavior of
asymptotic KL divergences between two univariate skew-t distributions (panel (a)) and two
univariate Student-t distributions (panel (b)) for several values of ν1 and ν2. In panel (a), the
KL divergence tends to increase when ν1 differs from ν2. Whilst in panel (b), in absence of
skewness, the KL divergence given by (3.23) tends to increase mainly for small values of ν1

and, small values of ν2 increase this measure.

4.1.3 Jensen-Shannon distance

For any η1,η2 ̸= 0, the expected values of (8) are not directly computable. However, the
integrals are evaluated numerically using the QUADPACK routine. We have shown that for
values of η1 between 0 and 1 and large values of η2, the largest values of KL divergence
are produced. For larger values of η1, the KL divergence is close to zero. This shows
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the asymmetry property of this divergence. On the other hand, Fig. 4.7 shows clearly the
symmetry property of the JS distance. In addition, we see that the JS distance increases
mainly with distance between the shape parameters η1 and η2.

The inequalities

JS(X ,Y ) ≤ 1
4

J(X ,Y ), (4.3)

JS(X ,Y ) ≤ log

{
2

1+ e−
J(X ,Y )

2

}
, (4.4)

provided by Lin (1991) and Crooks (2008), respectively, are very helpful to approximate
the SN JS distance with upper bounds for any η1 and η2. Fig. 4.8 compares the inequalities
(4.3) and (4.4) with the skew-gaussian JS distance (8) for several values of η1 and η2. The
smallest value of η1 and η2 produces similar results for the two bounds, and large differences
with respect to JS distance (panels (a)–(c)). However, panels (d)–(f) show that Lin’s bound is
larger than Crook’s bound for large values of η1 (η1 > 2), and both are similar to JS distance.
As is expected, for all cases the upper bounds and JS distance are equal when η1 = η2 = 0,
where JS(X ,Y ) = J(X ,Y ) = 0.

4.2 Finite mixture of multivariate skew-normal distribu-
tions

To study the behavior of the Shannon entropy bounds of Proposition 9 and the Rényi entropy
bounds of Eq. (3.13) and Lemma 6, some examples are simulated for the cases k = 1,2 and 3:

Example 2. k = 1, m = 2, π = (0.3,0.7), ξ̃ = (0.5,5), Ω̃ = (3.5,6), and η̃ = (0.5,3.5).

Example 3. (Prates et al., 2013)
k = 1, m = 3, π = (0.5,0.2,0.3), ξ̃ = (2,20,35), Ω̃ = (9,16,9), and η̃ = (5,3,6).

Example 4. (Prates et al., 2013)
k = 2, m = 2, π = (0.65,0.35),

ξ̃ =

((
5
7

)
,

(
2
5

))
, Ω̃ =

((
0.18 0.6
0.6 4

)
,

(
0.15 1.15
1.15 4

))
, and

η̃ =

((
0.69
0.64

)
,

(
4.3
2.7

))
.
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Example 5. (Prates et al., 2013)
k = 2, m = 3, π = (0.25,0.5,0.25),

ξ̃ =

((
0
0

)
,

(
5
5

)
,

(
2
8

))
, Ω̃=

((
3 1
1 3

)
,

(
2 1
1 2

)
,

(
0.15 1.15
1.15 40

))
, and

η̃ =

((
4
4

)
,

(
2
2

)
,

(
4.3
2.7

))
.

Example 6. (Celeux and Soromenho, 1996)
k = 3, m = 3, π = (0.22,0.36,0.42),

ξ̃ =

( 10
12
10

 ,

 8.5
10.5
8.5

 ,

 12
14
12

), Ω̃=

( 1 0 0
0 1 0
0 0 1

 ,

 1 0 0
0 1 0
0 0 1

 ,

 1 0 0
0 1 0
0 0 1

),

and η̃ =

( 4
0
1

 ,

 2
1
3

 ,

 4
2
2

).

Example 7. (Lee and McLachlan, 2013)
k = 3, m = 4, π = (0.125,0.19,0.135,0.55),

ξ̃ =

( 420
360
425

 ,

 160
570
200

 ,

 320
540
260

 ,

 530
80

450

),

Ω̃=

( 9160 5580 7000
5580 12105 7160
7000 7160 7250

 ,

 3870 1810 1770
1810 2900 1270
1770 1270 1320

 ,

 1695 1190 2280
1190 2780 2010
2280 2010 3720

 ,

 1590 590 15
590 2425 415
15 415 1870

), and η̃ =

( 4.8
17
50

 ,

 4
80
60

 ,

 40
8

10

 ,

 60
90
6

).

Figure 4.9 presents the examples mentioned in the settings above. Examples 2 and 3 are
represented in histogram plots and examples 4 and 5 in contour plots, according to Prates
et al. (2013). Examples 6 and 7 are represented in 3D plots, according to Lee and McLachlan
(2013). For all simulations, a sample of n = 500 generations is considered, and then fixed
using the function smsn.mix from mixsmsn package, developed by Prates et al. (2013) and
implemented in an R environment (R Core Team, 2016). Prates et al. (2013) implemented
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routines for ML estimation via the Expectation Maximization EM-type algorithm in FMSN
models (among several others).

For each example, Table 4.2 summarizes the four Shannon, as well as the Rényi entropy
bounds for α = 2, . . . ,5 and m = 2, . . . ,6. Shannon and Rényi entropies are compared with
AIC and BIC criteria (see e.g. Contreras-Reyes et al., 2014), misclassification (MC) rates
and consistency scores: normal skill score (NSS), Heidke skill score (HSS), and Hanssen–
Kuipers (HK) (see e.g. Contreras-Reyes, 2013). All these indicators show an optimal
performance of model fit if they are near 1; except MC, which ideally should be close to
0 (i.e. 100(1−MC)≈ 100%). For all examples, it is worth pointing out that these criteria
are optimal for minimum AIC and BIC values (marked in gray). For examples 2–4, the
misclassification rates are close to 0, and for examples 5–7 less than 0.46. This is because
of the complexity of systems with high dimensions and parsimonious models fit (excess of
parameters).

The information measures illustrated a similar effect. It can be seen that inequalities
given in (3.12) are accomplished in the Shannon entropy case and the information increase
for more parsimonious systems, where these 3D systems are characterized by a bigger set of
components and dispersion matrices with large elements. With respect to Rényi entropies,
the lower and upper bounds rather slowly increase with more components in examples
2–4, but rise faster with more components in examples 5–7. However, in examples 5–7
the lower and upper bounds are maximum for large α . Therefore, the Rényi information
criterion is suitable for model fits with accurate classification of observations, i.e., wrong
performance of Rényi entropy is related to inadequate selection of components in complex
systems. Additionally, the Rényi entropy of FMSN is localized between the upper and lower
bounds and an approximation should be given by the mean of these bounds.

4.3 Skew-normal and modified skew-normal distributions

In this section, we study the behavior of the series expansions of the Shannon entropy and
negentropy for the SN and MSN distributions. In both cases, we compare the Shannon
entropy and negentropies obtained from their series expansions with their corresponding
“exact" versions computed from the QUADPACK numerical integration method (Figure 4.10).
More precisely, the “exact" expected values E{ζ0(τZτ)} and E{ζ0(τZ∗

τ )} are computed using
the QUADPACK method as in Arellano-Valle et al. (2013), Contreras-Reyes and Arellano-Valle
(2012) or Contreras-Reyes (2016). From the series expansions, the Shannon entropy and
negentropies were carried out for k = 12 as in Withers and Nadarajah (2014). However they
tend to converge for k = 4 as in the Gram–Charlier and Edgeworth expansion methods (see
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e.g. Hyvärinen et al. (2001) and Stehlík et al. (2014), respectively). All proposed methods
are implemented with R software (R Core Team, 2016).

From Figure 4.10, we observe that the approximations by series expansions are better
in the MSN case (panels C and D) than in the SN case (panels A and B). Furthermore, that
series expansion approximations are quite exact for small to moderate values of the skewness
parameter τ . More specifically, for 0 ≤ τ ≤ 2 in the SN case, and 0 ≤ τ ≤ 4 in the MSN case.
Additionally, panels A and C show that the Shannon entropy decreases as τ increases, while
panels B and D indicate that the negentropy increases with τ . Finally, as expected in both
GSN models, the Shannon entropy is less than or equal to the Shannon entropy of the normal
model, namely H(Z0)≈ 1.418 (Contreras-Reyes, 2015, Contreras-Reyes and Arellano-Valle,
2012).

Panel A of Figure 4.11 shows, respectively, the behavior of the KL divergences of the
SN and MSN distributions from the normal one obtained from the expansions in series
given in Eqs. (3.33) and (3.35). As in Figure 4.10, the KL divergence between the SN and
normal distributions increases smoothly for values of τ ∈ [0,2], but rises sharply for τ > 2.
Meanwhile, the increase in KL divergence between the MSN and normal distributions seems
more stable, at least for τ ∈ [0,5]. Crucially, for τ = |η | ≥ 2 the SN model is close to its
maximum level of asymmetry, while the MSN model does it for τ = |η | ≥ 5 (see Figure 2 in
Arrué et al., 2016).

Table 4.3 presents the observed power of the asymptotic test of normality obtained from
Eq. (3.37) in Section 3.6, for different sample sizes and values of the skewness parameter.
All these results were obtained from 2000 simulations for a nominal level of 5%. In each
simulation, the MLE of Z ∼MSN(η) was obtained by maximizing the log-likelihood function
Eq. (3.39). Table 4.3 shows that the proposed test is considerably conservative since the
observed rate of incorrect rejections of the normality hypothesis is always lower than the
nominal level. The proposed test is also considerably more powerful in large samples
(n ≥ 300) and values of the skewness parameter far from zero (|η | ≥ 1.2). As expected, the
power of the test increases with sample size, particularly for small values of the skewness
parameter (close to normality), given that statistic 2nK0 depends on n despite K0 is small
(Figure 4.11).

Now, we compare the proposed asymptotic test with two additional tests considered by
Arrué et al. (2016) for null hypothesis H0 : η = η0 versus H1 : η ̸= η0: the Likelihood Radio
Test (LRT) (Section 3.6), and the asymptotic normality–based test. Since the regularity
condition on MSN’s FIM at η = 0 is satisfied, the authors proposed a distributional normal
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theory for testing H0, i.e., based on asymptotic normality of MLE given by

√
n(θ̂ −θ0)

d−→N3(0, i−1
MSN(θ0)),

as n → ∞, where θ̂ = (µ̂, σ̂2, η̂)⊤ is the MLE of θ = (µ,σ2,η)⊤, θ0 = (µ,σ2,0)⊤, and
i−1
MSN(θ0) is the inverse FIM component related to θ0. For asymptotic normality and LRT,

they conclude that H0 is rejected for large values of τ̂ = |η̂ | and, for large values of n, the
coverage rate increase when η̂ exists (H0 is rejected) (see Table 3–5 of Arrué et al., 2016).
Analogously, in Table 6 of Arrué et al. (2016) the coverage rate increase when η̂ exists for
large values of n.
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Table 4.1 Numerical and exact (Proposition 5) method for univariate SN Rényi entropy,
Rα(Z), Z ∼ SN1(0,1,η), with α = 2, . . . ,6 and η = 0.2, . . . ,1,1.5,2, . . . ,6.

Method η / α 2 3 4 5 6
Numerical 0.2 1.3738881 1.0273108 0.9117845 0.8540211 0.8193630

0.4 1.3401742 0.9935483 0.8779974 0.8202192 0.7855512
0.6 1.2932667 0.9464721 0.8308348 0.7730041 0.7383008
0.8 1.2414279 0.8942994 0.7784870 0.7205485 0.6857722
1 1.1904423 0.8428276 0.7267522 0.6686491 0.6337602
1.5 1.0823640 0.7332379 0.6162880 0.5576157 0.5223270
2 1.0047402 0.6542817 0.5364793 0.4772159 0.4414939
3 0.9100381 0.5581948 0.4393628 0.3793110 0.3429680
4 0.8574065 0.5052829 0.3861362 0.3257878 0.2891777
5 0.8247224 0.4727606 0.3536358 0.2932526 0.2565831
6 0.8026627 0.4510083 0.3320375 0.2717340 0.2351037

Exact 0.2 1.3738894 1.0273131 0.9117890 0.8540252 0.8193690
0.4 1.3401764 0.9935511 0.8780049 0.8202300 0.7855672
0.6 1.2932684 0.9464738 0.8308416 0.7730247 0.7383349
0.8 1.2414287 0.8943016 0.7784961 0.7205797 0.6858232
1 1.1904431 0.8428294 0.7267614 0.6686843 0.6338222
1.5 1.0823631 0.7332380 0.6162918 0.5576375 0.5223843
2 1.0047386 0.6542808 0.5364795 0.4772250 0.4415245
3 0.9100384 0.5581964 0.4393615 0.3793087 0.3429700
4 0.8574080 0.5052757 0.3861371 0.3257861 0.2891721
5 0.8247224 0.4727601 0.3536374 0.2932580 0.2565860
6 0.8026627 0.4510081 0.3320370 0.2717355 0.2351083
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Fig. 4.1 Plots of the ST entropy for ν = 1,2, . . . ,185 degrees of freedom as a function of
shape parameter α . The red and blue lines correspond to normal and skew-normal entropies,
respectively.
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Table 4.3 Observed power (both in %) of the proposed normality test using MLE of MSN
model from 2000 simulations for nominal level 5%, and various values of shape parameter η

and sample size n.

n/η 0 0.1 0.2 0.3 0.4 0.8 1.2 1.6 2
50 97.55 37.02 39.45 37.39 37.60 40.07 40.82 48.37 51.29
100 97.65 46.15 45.90 47.90 46.05 50.05 56.10 66.20 75.49
200 98.05 54.25 54.30 53.65 54.50 58.80 70.55 85.20 93.25
300 98.30 57.30 57.70 58.00 58.65 62.00 77.05 92.65 98.25
400 98.55 57.20 57.65 57.15 57.50 64.10 83.95 95.80 99.65
500 98.70 58.55 59.40 59.95 58.45 66.70 86.95 97.45 99.75
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Fig. 4.10 Shannon entropy and negentropy for (A)-(B) SN and (C)-(D) MSN cases. The blue
and red lines correspond to numerical integration and cumulant expansion series methods,
respectively.
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Chapter 5

Applications

5.1 Santiago’s monitoring network design

The design of optimal networks is a crucial problem in engineering and environmental pollu-
tant analysis. Among several existing methods, the computation of the Shannon information
index (Silva and Quiroz, 2003) and Bayesian entropy (Ainslie et al., 2009) are useful to
design a meteorological monitoring network. A practical illustration of our methodology is
provided in this section on a subset (SEREMI, 2006) of time series of ozone concentrations at
7 monitoring stations denoted by XY = {F,L,M,N,O,P,Q} with n = 7×24×31 = 5,208
hourly observations in March 2006. In this case, the pollutant data contain abnormalities
in the observations, specifically skewness in the empirical distribution. Therefore, standard
distributions are very limited to represent such data.

5.1.1 Data treatment

In this study, we proceed to analyze the optimization of this monitoring network as follows:

1. We define the moving average smoothing (MAs) with seasonal parameter s for station
j at time t:

T s
t, j =

1
s

t

∑
i=t−s

yi j,

where yi j is the observation for station j at the ith time. For small values of s, the
smoothing detects the influence of the minimum and maximum values; however, for
larger values of s, the transformation T s

t, j decreases the variance of the time series.

2. In this application, we consider a multivariate data set XY of 7 stations, a subset X of 6
monitoring stations and we choose one non-monitoring station Y to be removed from
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XY for each value of s. We compute the mutual information index I(X,Y ) related to
multivariate normal, SN, and ST variables (WXY ,WX and WY ).

3. To find or not evidence to reject the null hypothesis about the marginal variable WY

having SN or ST distributions, it is possible to compute the p-values according to
the goodness-of-fit test proposed by Kolmogorov-Smirnov, for all s and the variables
defined in step 2. Alternatively, it is possible to create a PP-plot and compare the
performance of these fitted distributions.

4. We calculate the maximum likelihood estimators (MLEs) of the location, dispersion
and shape/skewness parameters using the sn library of R (Azzalini, 2008) for variables
defined in the previous steps, for each value of s. From Azzalini and Capitanio (1999),
for a sample of independent observations ZZZi ∼ SNk(ξ ,Ω,η), i = 1, ...,n, we estimate
the parameters by numerically maximizing the log-likelihood function:

log L(ΘΘΘSN) = −n
2

log |Ω|− n
2

tr(Ω−1Ṽ)+
n

∑
i=1

log [Φ{η
T (zzzi −ξ )}],

where ΘΘΘSN = {ξ ,Ω,η} and Ṽ= 1
n ∑

n
i=1(zzzi−ξ )(zzzi−ξ )T . Now, if ZZZi ∼ STk(ξ ,Ω,η ,ν),

i = 1, ...,n, we use the reparameterization and log-likelihood of Azzalini and Cap-
itanio (2003). Let Ω = (AT DA)−1, where A is an upper triangular k × k matrix
with diagonal terms equal to 1, D = diag(e−2ρ ) and ρ ∈ Rk. For the parameter set
ΘΘΘST = {ξ ,A,ρ,η , log(ν)}, we obtain

log L(ΘΘΘST ) = n log 2+ log |D|n/2 +
n

∑
i=1

log tk(zzzi −ξ ;ν)

+
n

∑
i=1

log T

(
η

T (zzzi −ξ )

√
ν + k
ν + si

;ν + k

)
,

where si =(zzzi−ξ )T Ω
−1(zzzi−ξ ). So, from Θ̂ΘΘST = argmaxΘΘΘST {L(ΘΘΘST )}, we can obtain

the MLEs {ξ̂ ,Ω̂, η̂ , ν̂}.

5. For the variables selected in step 2, let pX,Y represent the multivariate normal, SN or ST
joint probability density function between X and Y . The multivariate Student’s t case
is not included in this application because the estimation of the skewness parameter in
the ST case is clearly larger than zero. Let pX and pY be the corresponding marginal
densities. Then the mutual information index has been derived in Sections 3.2.1
and 3.2.3 for SN and ST distributions, respectively. If X and Y are independent,
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then IXY = 0. We can interpret this as when the monitoring stations do not provide
information on the chosen non-monitoring station and vice versa (Silva and Quiroz,
2003). Then, from the MLEs obtained in step 4, we can obtain the terms ∥η̄X(Y )∥,
∥η̄Y (X)∥ and ∥η̄XY∥ mentioned in Proposition 4. So, we can compute the SN and
ST mutual information index for all s values from the MLEs in step 4 according to
Propositions 2 and 3.

6. We compare our approach with the normal case used by Silva and Quiroz (2003). That
study analyzed daily averaged data at 8 stations during July of 1998 (there exists an
extra B station until 2003). However, other authors such as Ainslie et al. (2009) used
a moving average according to government policies of their countries. In this work,
we analyze an updated data in the Summer of 2006, because the ozone produces its
minimum and maximum variabilities in that season. So, we proceed as follows: (a)
We calculate the daily average (DA) of observations corresponding to fixed average of
24 hours; (b) We use the Box-Cox transformation to obtain near multivariate normality
in the data:

y(λ ) =

{
yλ−1

λ
, if λ ̸= 0,

log(λ ), if λ = 0;

(c) We test multivariate normality according to Mardia (1985)’s test based on the
measures of multivariate skewness (β1,k) and multivariate kurtosis (β2,k) with k = 7
(XY : complete monitoring network with 7 stations), k = 6 (X: monitoring network with
6 stations and 1 station removed) and k = 1 (Y : removed station); and (d) We compute
the multivariate normal Shannon index for this case according to the alternative proof
showed in Section 3.1.1.

5.1.2 Main results

Figure 5.1 illustrates the behavior of the transformations DA and MA, and the original data.
Given that the period of the time series is 24 hours, values of s less than 24 preserve the
variance of the original data but values higher than 24 decrease the variability. The amplitude
of the data increases for the case of moving average s = 16 and 32. About the distribution of
the data, small values of s present heavy tails in the data, specifically for a moving average of
s = 1 and 8. For the cases of s = 24 and DA, the distribution tends to be normal and finally,
the case s = 32 presents skewness and light tail in the distribution. These considerations are
submitted to an analysis of distribution fit.

The results of the multivariate and univariate tests for joint and marginal variables for
several transformations s described in steps 1 and 2 are shown in Tables 5.1 and 5.2, and
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in Figure 5.2. They illustrate the flexibility of the class of the ST over SN and normal
distributions. We can see in Table 5.2 that for the transformations MAs with s = {32,40},
the Kolmogorov-Smirnov test’s p-values are higher than 0.05 in all marginal variable cases
for the SN distribution. On the other hand, the PP-plot (see Figure 5.2) shows that the ST
presents a better performance in the fit to the empirical distributions. However, in the cases
of s = {1,8,16,24}, the null hypothesis is rejected in some marginal variables for the SN
case. In addition, the multivariate and univariate data are normally distributed for the daily
average transformation according to Mardia’s (joint cases) and Shapiro’s (marginal cases)
tests (see Table 5.1).

We can see in Figure 5.3 (left panel) through the log-likelihood values that the Akaike’s
Information Criterion (AIC, Akaike, 1974), AIC = −2{logL(ΘΘΘ)− np}, of the ST model
are smaller than the SN model values (the number of parameters np is irrelevant for these
quantities). However, between s = 32 and 42, both log-likelihoods tend to be equal. Indeed,
in Figure 5.3 (right panel) when the period s increases, the ν parameter increases too but for
the values s = {20, ...,42}, ν increases quickly to 120. This behavior may be explained by
the good fit of the SN for these s values according to the performance of the ST distribution
fit (see Figure 5.2d, 5.2e, 5.2f).

The mutual information index is maximized when the station L is removed from the
network XY for the original data and for both SN and ST distributions (see Figure 5.4 and
Table 5.3). However, for the cases of s = {8,16,24,32,40}, when the station Q is removed
from the network, the mutual information index is maximized in both distribution cases; then,
this induces a constant decision. It is then interesting to note that the mutual information
index is maximum for the first value of s. As expected, both mutual information indexes
have a seasonal effect of 24 hours in relation with the diurnal change of the ozone pollutant.
However, if we look for the second largest mutual information index for s = 1, we have that
it is the Q station that needs to be removed. According to the procedure of Silva and Quiroz
(2003) in the case of the normal distribution, the largest mutual information index is when
the station Q is removed and, in the second place, when the station N is removed.

Different meteorological factors are not considered in this study but may be important in
the decision to design an optimal network. However, our statistical tool uses the contained
information of a selected appropriate data set and preserves some features of the data
distribution such as skewness and heavy tails, necessary to make a better decision.
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5.2 Chile’s seismological catalogue

For a statistical application of SN KL and J divergences, we consider the seismic catalogue
of the SSN (2011) analyzed by Contreras-Reyes (2013), containing 6714 aftershocks on a
map [32–40◦S]×[69–75.5◦E] for a period between February 27/2010 13 to July 13/2011.
Our main goal is to compare the aftershock distributions of local and moment magnitudes
(Ml and Mw, respectively) using the KL divergence and J divergence between clusters
detected by nonparametric clustering (NPC) method developed by Azzalini and Torelli
(2007). This method allows the detection of subsets of points forming clusters associated
with high density areas which hinge on an estimation of the underlying probability density
function via a nonparametric kernel method for each of these clusters. Consequently, this
methodology has the advantage of not requiring some subjective choices on input, such
as the number of existing clusters. The aftershock clusters analyzed by Contreras-Reyes
(2013), consider the high density areas with respect to its map positions, i.e, they consider
the bi-dimensional distribution of latitude-longitude joint variable to be estimated by the
kernel method (Figure 5.5). For more details about the NPC method, see also Azzalini and
Torelli (2007).

Depending on the case, we consider it pertinent to analyze the measures of J divergences
between a cluster sample fitted by a SN distribution versus the same sample fitted by a normal
distribution, where the fits are previously diagnosed by QQ-plots (see e.g Arellano-Valle et al.,
2013). The MLE’s of the model parameters are obtained by using the sn package developed
by Azzalini (2008) and described in Section 5.1.1; the entropies, cross-entropies, KL and J
divergences are computed using skewtools package developed by Contreras-Reyes (2012),
both packages are implemented in R software (R Core Team, 2016). In Section 5.2.1 we
present the Kupperman test (Kupperman, 1957) based on asymptotic approximation of the
KL divergence statistic to chi-square distribution with degrees of freedom depending on
the dimension of the parametric space. In order to examine the usefulness of the KL and J
divergences between SN distributions, we consider the MLE’s of the location.

5.2.1 Asymptotic test

Following Kupperman (1957), Salicrú et al. (1994) and Frery et al. (2011), in this section we
consider the asymptotic properties of the likelihood estimator of the J divergence between
the distributions of two random vectors X and Y. For this, it is assumed that X and Y have
pdf indexed by unknown parameters vectors θθθ 1 and θθθ 2, respectively, which belong to the
same parameters space. Let θ̂θθ 1 = (θ̂11, . . . , θ̂1p)

⊤ and θ̂2 = (θ̂21, . . . , θ̂2p)
⊤ be the MLE’s

of the parameter vectors θθθ 1 = (θ11, . . . ,θ1p)
⊤ and θθθ 2 = (θ21, . . . ,θ2p)

⊤, respectively, based
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on independent samples of size N1 and N2 from the distributions of X and Y, respectively.
Denote by J(θθθ 1,θθθ 2) the J divergence between the distributions of X and Y, and consider the
statistic defined by

SKL(θ̂θθ 1, θ̂θθ 2) =
N1N2

N1 +N2
J(θ̂θθ 1, θ̂θθ 2).

Under the regularity conditions discussed by Salicrú et al. (1994), it follows that if N1
N1+N2

−→
N1,N2→∞

λ ,

with 0 < λ < 1, then under the homogeneity null hypothesis H0 : θθθ 1 = θθθ 2,

SKL(θ̂θθ 1, θ̂θθ 2)
d−→

N1,N2→∞
χ

2
p, (5.1)

where " d−→" means convergence in distribution.
Based on (5.1) an asymptotic statistical hypothesis tests for the null hypothesis H0 : θθθ 1 =

θθθ 2 can be derived.
Consequently, it can be implemented in terms of the J divergence (or the KL-divergence,

as in Frery et al., 2011) between the multivariate SN distributions X ∼ SNk(ξ 1,Ω1,η1)

and Y ∼ SNk(ξ 2,Ω2,η2), for which θθθ 1 and θθθ 2 are the corresponding p = 2k+ k(k+1)/2
different unknown parameters in {ξ 1,Ω1,η1} and {ξ 2,Ω2,η2}, respectively. Hence, (5.1)
allows testing through the P-value if the homogeneity null hypothesis H0 : ξ 1 = ξ 2, Ω1 =

Ω2, η1 =η2 is rejected or not. Thus, if for large values of N1, N2 we observe SKL(θ̂θθ 1, θ̂θθ 2)= s,
then the homogeneity null hypothesis can be rejected at level α if P(χ2

p > s)≤ α .

5.2.2 Main results

The SN KL divergence values of Proposition 6 for each pair of clusters are reported in
Table 5.4. By Proposition (7), we can obtain the symmetrical SN J divergences to compare
the parametric differences between these clusters. The MLE’s of the unknown parameters for
the distribution of each cluster are shown in Table 5.5 with its respective descriptive statistics
and estimated SN model parameters. Figures 5.6 and 5.7 indicate the performance of the
fitted models, where the QQ-plots for the normal and SN cases are included. These QQ-plots
represent the dispersion of the Mahalanobis distances related to the theoretical parameters,
with respect to the empirical percentiles of the chi-square distribution. It follows from there
that as the dispersion line is fitted by the theoretical line in a greater degree, the SN fit will
have better performance. The diagnostic QQ-plots are also possible to obtain by using the sn
package developed by Azzalini (2008).

We can see from Table 5.4 that the grey (7) cluster has the larger discrepancy with respect
to the other clusters, except with respect to red (2) and violet (5) clusters, which is due mainly
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to the location and shape fitted parameters (see Table 5.5). A counterpart case is founded
for the green(3) cluster, which presents the greater differences with respect to these two
aforementioned clusters. On the other hand, the diagnostic QQ-plots show good performance
of the SN fit with respect to the normal case, although we should observe here that the red
(2) cluster is being affected by an outlier observation corresponding to the greater magnitude
Mw = 8.8. However, this fit considers that the probability of a similar occurrence in the
future of a great event like this is practically zero.

Given that the seismic observations have been classified by the NPC method considering
their positions on the map, the KL and J divergences based on magnitudes proposed in
this Section are not valid tools to corroborate the clustering method. Nevertheless, these
measures corroborate some similarities in the distributions of those clusters localized away
from the epicenter as, e.g., red (2) - violet (5) and green (3) - yellow (6), as well as some
discrepancies in the distributions of some clusters as, e.g., red (2) - green (3), red (2) - blue
(4) and gray (7) - black (1). All of these similarities and discrepancies were evaluated through
the Kupperman test (5.1). Table 5.6 reports the statistic test values and the corresponding
P-values obtained by comparing the asymptotic reference chi-square distribution with p = 3
degrees of freedom (k = 1). We can see that this test corroborates the similarities in the
distribution of the clusters red (2) - violet (5) and green (3) - yellow (6), but this test also
suggests similarities for the black(1)-blue(4) and blue(4)-yellow(6) clusters. These results
are consistent with the values of the fitted parameters, as we can see in Table 5.5. In this
last table we have also presented the values of the parameter τ = (η2Ω)1/2 for each cluster
and the divergence J(X ,Y0) between SN and normal distributions defined in equation (3.10).
Specifically, since the shape/skewness parameters of red (2) and gray (7) clusters are the
smallest, it is then evident that the lower values for the divergence J(X ,Y0) correspond to
these clusters, a result that is consistent with the panel (b) of Figure 4.2.

5.3 Swordfish age-length-weight data

Estimation of age from growth of swordfish (Xiphias gladius Linnaeus) is an important factor
in assessing stock trends Quelle et al. (2014). The swordfish belongs to highly migratory
pelagic species and has been observed in tropical to temperate waters (between 5 and 27◦C),
and in western and eastern Pacific and Atlantic (Cerna, 2009). A more detailed description
of this species can be found in (Cerna, 2009).

Age and growth estimation of swordfish presents several difficulties (Quelle et al., 2014).
For example, Cerna (2009) describes age estimates obtained by cross sections of the second
anal fin ray (Sun et al., 2002), which appears an expensive procedure for age estimation.
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Quelle et al. (2014) recall the inconclusive results obtained from the indirect validation test.
(Roa-Ureta, 2010, , and references therein) maintain that since age is a latent variable, and
thus extracting growth information objectively is difficult. He estimates growth parameters
using a likelihood function approach underlying a normal mixture model to be applied on
squat lobster length dataset, where age is unknown. The normal mixture model components
are determined by Akaike’s information criterion (AIC) which depends on the sample size
and the number of parameters of the mixture.

This application is motivated by the determination of age-length relationship by sex group
using information measures. This is presented in a framework format based on the following
steps:

(a) The matrix of data includes both length and weight (k = 2) for each observation.
Because it is necessary to avoid colinearity, the length-weight regression is computed
to show non-linear relationship among both columns.

(b) Given that the number of components is unknown (age is unknown), the FMSN
parameters are estimated considering the 2-dimensional matrix of the last step for
several values m.

(c) The number of components is determined by the bounds of information measures
developed in Section 3.2.2 and then compared with AIC and BIC criteria.

(d) The observed (measures obtained from the procedure of Cerna, 2009) and estimated (by
selected mixture model) ages of all observations are compared using a misclassification
analysis.

Section 5.3.1 describes the dataset used and Sections 5.3.2 and 5.3.3 describe the results
for the steps mentioned (Figure 5.8).

5.3.1 Data and software

The dataset used for evaluating the performance of our findings corresponds to a sample of
respectively 486 and 507 swordfish males and females length observations. The samples
were collected in the southeastern Pacific off Chile during 2011 and were obtained using
the routine sampling program of the fishery conducted by IFOP (2010). All these fish were
measured to the nearest centimeter and the range of observed lengths. The catch included fish
between 120–257 cm for males, and 110–299 cm for females. As is described in Section 4.2,
the FMSN parameter estimates were computed using the mixsmsn package.
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5.3.2 Length-weight relationship

Following Contreras-Reyes (2016, and references therein), we briefly describe the length-
weight function. This function explains the increments in weight of species in terms of their
length by the non-linear relationship

W (x) = α xβ , (5.2)

where W (x) represents the observed weight at length x, α is the theoretical weight at length
zero and β is the weight growth rate.

The model (5.2) is fitted to an empirical dataset, (yi,xi) ∈ R+×R+, i = 1, ...,n. This
can be described in terms of multiplicative structure the errors, yi =W (xi)εi, where εi are
non-negative random errors and their transformations are given by ε ′i = log εi. Here, we
consider the residuals ε ′i iid and normal distributed, denoted by N(0,σ2), for a dispersion σ2

parameter.
Figure 5.9 illustrates the linear regression fits of (5.2), for which we have a high value

for the R2 coefficient of determination for both sexes (Table 5.7). There exists a small
number of observations of length classes larger than 210 and 250 cm for males and females,
respectively, that tends to be isolated with respect to lighter weights. Given the good fitting
of length-weight model, we can see that a non-linear relationship could be assumed between
length and weight. Therefore, we consider a matrix with two columns constructed by these
variables for the clustering modeling.

5.3.3 Clustering and model selection

As in Section 4.2, the length-weight data is evaluated with the FMSN model for several
values m depending on the maximum age by sex. Some authors reported that maximum
age in males and females reaches 9 and 11 years, respectively (Cerna, 2009, Quelle et al.,
2014, Sun et al., 2002). One of the difficulties that anal-fins readers observed, was that they
could find multiple annuli and disappearance of the first annulus in older fishes, thus careful
interpretation is important (Quelle et al., 2014). Also, this species were aged as younger
at given body lengths, i.e., it was difficult to find older fishes by selectivity (Cerna, 2009,
Contreras-Reyes et al., 2016). We take into account these facts to discuss the optimal number
of clusters for the classification of lengths into age classes.

To reduce the scale of the plots, in Fig. 5.10 appears the logarithmic of the average
between upper and lower bounds for Shannon and Rényi entropies, for m = 1, . . . ,9 in males
and m = 1, . . . ,11 in females. It is worth pointing out that the values related to Shannon
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entropy (panels (a) and (c)) increase when the number of components increases in both sexes.
Panels (b) and (d) show that values related to Rényi entropies increase until m = 7 and then
decrease. This means that Rényi entropy bounds provide information of the models and help
us to determine a criterion to choose a possible number of components on each sex group.
There also exist some differences between α values, where the quadratic Rényi entropy
(α = 2) provides more information.

The results mentioned before are compared first with AIC and BIC criteria in Table 5.8.
These criteria increase when the number of components increases, and minimum AIC and
BIC values correspond to the simplest model m= 2. Table 5.8 also shows the misclassification
(MC) rates and consistency scores considered in Section 4.2. All these indicators are applied
over the assigned observations for each cluster and the observed age, for each FMSN and
FMN (normal) model. The values corresponding to m = 7 clusters, marked in gray, provide
the best results. The model has a classification rate of 71% and 65% for males and females,
respectively; and the highest values of NSS, HSS and HK scores. The best FMN model
corresponded to m = 6 and 8 for males and females, respectively; where its respective
classifications rate was 57% and 55%.

The FMSN fits for length-weight of males and females are shown if Fig. 5.11. The
lengths of the older species presents high variability compared to younger ones. The group
of males has the parameters π = (0.167,0.117,0.159,0.257,0.025,0.084,0.191),

ξ̃ =

((
175.77
68.10

)
,

(
192.98
93.99

)
,

(
141.15
34.65

)
,

(
155.55
41.27

)
,

(
211.49
156.93

)
,(

201.31
105.25

)
,

(
162.76
53.97

))
,

Ω̃ =

((
6.47 2.05
2.05 7.90

)
,

(
8.74 4.18
4.18 10.74

)
,

(
8.45 4.09
4.09 5.28

)
,

(
7.66 1.81
1.81 6.73

)
,(

21.63 12.29
12.29 14.91

)
,

(
14.16 7.83
7.83 18.12

)
,

(
7.20 2.34
2.34 6.94

))
, and

η̃ =

((
0.87
1.06

)
,

(
0.62
−1.35

)
,

(
−1.28
−0.99

)
,

(
−1.12
1.23

)
,

(
0.91
1.19

)
,

(
−0.83
0.87

)
,(

0.82
0.73

))
;

and for females, π = (0.279,0.058,0.109,0.070,0.240,0.015,0.229),
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ξ̃ =

((
193.98
82.98

)
,

(
236.10
205.41

)
,

(
207.07
120.38

)
,

(
221.49
158.33

)
,

(
153.72
43.52

)
,(

264.01
283.60

)
,

(
161.01
51.52

))
,

Ω̃=

((
11.23 4.31
4.31 13.57

)
,

(
16.77 6.92
6.92 25.62

)
,

(
9.68 4.03
4.03 15.32

)
,

(
14.88 5.98
5.98 18.20

)
,(

13.01 6.91
6.91 9.03

)
,

(
16.87 13.23
13.23 58.63

)
,

(
8.86 5.29
5.29 10.43

))
, and

η̃ =

((
−0.99
0.67

)
,

(
1.13
1.25

)
,

(
1.09
1.11

)
,

(
1.18
1.33

)
,

(
−1.23
−0.86

)
,

(
−0.20
1.49

)
,(

0.95
0.96

))
.

5.4 Fish condition factor time series

The database used in this study corresponded to the data collected from the routine biolog-
ical sampling program of the anchovy (Engraulis ringens) landings in the North of Chile
(18◦20’LS–24◦00’LS), carried out by IFOP (2010). The samples are collected monthly from
the landing ports and transferred to the laboratory for analysis. The sex of each individual
in the sample is then identified and the weight (gr) and length (cm) of each individual is
registered. The range of observed lengths in the catch included fish between 12 and 18
cm. The data covered the period from January 1990 to December 2010 and the numbers of
individuals sampled by year and interval of length are summarized in Contreras-Reyes et al.
(2016). The sample includes only 12 to 18 cm length range, because of the impact of length-
specific implementation of a minimum landing size (fishing selectivity) (Contreras-Reyes
et al., 2014). Given that samples are collected monthly, the CF process is defined in discrete
time.

Individual variations from the general length–weight relationship have usually been
considered more interesting than the relationship (5.2) itself (with length x = L), and have
been frequently studied under the general name of Condition Factor (CF, Le Cren, 1951).
This factor is calculated as a ratio between the observed weight and that expected from the
observed length. Considering the Cubillos and Claramunt (2009) version, the CF (%) is
computed:

CF(L) =
W (L)

Ŵ (L)
100, (5.3)
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where Ŵ (L) is a theoretical individual total weight obtained by estimating α and β from
(5.2). This expression is commonly used for allometric growth when CF per length classes is
analyzed. In addition, CF allows to determine the mean body condition or fatness present in a
specific population. Hypothetically, values of CF near 100% indicate an ideal or equilibrated
body condition, whereas CF values far from this limit are interpreted as abnormal body
condition: food deficit in the ocean is ≪ 100% and food abundance is ≫ 100%. Nevertheless,
the CF of fish should also be affected by biological-environmental factors. For example, CF
values lower and higher than 100% are produced by warm and cold events, in terms of sea
superficial temperature (Cubillos and Claramunt, 2009). On the another hand, Kawabata et al.
(2011) consider another version of CF for biometric data (not considered here), incorporating
the cubic length and gonad weight.

Temporal variations in fatness related to growth have not yet been modeled in previous
descriptive or correlation analysis studies (see e.g. Brosset et al., 2015a, Cubillos and
Claramunt, 2009, Kawabata et al., 2011). However, it is well known that seasonal changes in
gonad development, growth and stomach contents are deterministic of a species’ condition.
These changes emanate from the species’ reproductive strategy (energy storage) (Cubillos
and Claramunt, 2009). In addition, strong environmental events such as the ENSO cycle (El
Niño-La Niña) and upwelling phenomena have been postulated as drivers of the biological
processes (Yánez et al., 2008). Yet, the current biological and ecological discussion ignores
two crucial features: threshold due to food limitation, and delay due to development time
(Tong, 1990). Given the discontinuity of the piecewise linear function to interpreting CF time
series, a lack of ecological credibility also holds for these threshold autoregressive models
(van der Meer et al., 2000). However, it fully characterizes the dynamical properties of the
time series (Qian and Cuffney, 2012).

5.4.1 Condition factor time series modelling

Model (5.2) can be created as a model of non-linear regression with multiplicative error
(Contreras-Reyes et al., 2014). Thus, the following linear regression can be obtained from a
logarithmic transformation in both sides of (5.2):

log{Wi j(Li j)}= α
( j)+β

( j) log Li j + εi j, (5.4)

where Wi j and Li j are associated with the ith observation (i = 1, . . . ,n j), and the jth group
(1: male, 2: female). We assume in (5.4) that εi j are independent and gaussian distributed
random errors with zero mean and constant variance σ2, denoted as N(0,σ2). From (5.4),
the estimated monthly body weight is determined by maximum likelihood and overall ni j
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observations:

Ŵj(L j) = exp(α̂ j + β̂ j log L j). (5.5)

Considering (5.3) and (5.5), the monthly CF time series are constructed for an specific
group j and length L = L( j)

t . Hereafter and for the sake of simplicity, the CF time series are

denoted as xt ≡ ĈF
( j)
t (L( j)

t ), t = 1, . . . ,n = 21×12. Linear regression of Eq. (5.4) was used
to estimate the weight by group (see Table 5.9). Figure 5.12 illustrates the linear regression
fits of (5.4) by group, for which we have in general a high value for the R2 coefficient of
determination. There exist a set of observations of length classes larger than 18 cm that tends
to be isolated with respect to lighter weights. The estimates of length-weight regressions
(Table 5.9) are used to obtain the CF time series.

5.4.2 Skew-normal process

Tong and Lim (1980, and references therein) consider that limit cycles play a central role
in the modelling of cyclical data. More specifically, the authors considers a non-linear and
recursive relationship

xt = u(xt−1), (5.6)

where u(·) is a continuous function. From the general form (5.6), the threshold autoregressive
model of order 1 is extracted:

xt = δ |xt−1|+ εt , |δ |< 1, (5.7)

where {εt} is white noise N(0,1−δ 2) and δ is the threshold parameter. According to (5.7),
xt is generated by one of two distinct autoregressive models depending on the level of the
lagged variable xt−1. The condition |δ |< 1 ensures weak stationarity of the process (5.7).
Therefore, the threshold parameter vary from the 0th to the 100th percentile of the empirical
distribution of xt .

Andêl et al. (1984) deduce the corresponding integral equation for (5.7):

g(v;δ ) =
∫

∞

−∞

φ(v−δ |t|;0,1−δ
2)g(t)dt,

and its solution given by (2.25). Therefore, the solution (2.25) corresponds to the standardized
SN distribution (Azzalini, 1985). The connection of the process (5.7) with the density (2.25)
is explained by its stochastic representation (2.26).
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Figure 5.13 simulates the process (5.7) and presents the Hurst exponent (Peng et al.,
1994) and fractal dimension (Gneiting et al., 2012) for several values of η . For larger values
of η , δ increases and the variance 1−δ 2 of the process decreases. When η is near zero, the
Hurst exponent and fractal dimension decreases and increases, respectively, i.e., for small
values of η , |δ | tends to 1 and the process {xt} becomes (weak) non-stationary.

5.4.3 Skew-normal Jeffrey’s divergence and Jensen–Shannon distance

In this section, we emphasize the fact that environmental and biological events mentioned
should produce extreme values in CF time series, which are represented by kurtosis and
asymmetry in CF distribution. Therefore, the episodes of uncertainty could be determined if
the proposed information measures identify weak or strong events in these time intervals.
Since the time series associated with these phenomena are nonlinear, informational quantifiers
could be employed to identify, classify, quantify and interpret occasional events (Carpi et al.,
2011). It follows that CF time series should be controlled by the shape parameter of the SN
distribution (Azzalini, 1985). For the fitted SN densities, uncertainty episodes are evaluated
by J divergence as well as JS distance to compare length classes.

CF time series are related to each length class and group. Since the shape parameter η is
not affected by a linear transformation of X (Azzalini and Capitanio, 2013), CF time series
were previously standardized. Table 5.10 shows the shape parameter η estimates of SN fits
related to these time series. In terms of the SN distribution, negative and positive η̂ values
correspond to asymmetry to the right and left, respectively (see SN fits of Figure 5.14 and
property 2 of Section 2.4.1). This means that CF of the above mentioned classes are affected
by extreme events. For easier comparisons of CF values with respect to 100%, Figure 5.14
illustrates this last fact for nonstandardized CF time series:

a) For males, the smallest shape parameter estimate was η̂ =−3.092 for length L = 17
cm and with |δ̂ |= 0.951, i.e., the process is close to be non-stationary. In this class,
the smallest CF value (39.9%) was produced in 05/1992. The largest shape parameter
estimate was η̂ = 1.778 for length L = 13 cm and with δ̂ = 0.872, and the largest CF
value (125%) was produced in 12/1996.

b) For females, the smallest shape parameter estimate was η̂ =−1.581 for length L = 18
cm and with |δ̂ |= 0.845. The smallest CF value (68.6%) was produced in 08/2008.
Same as with males, the largest shape parameter estimate was η̂ = 2.267 for length
L = 13 cm and with δ̂ = 0.915, i.e., the process is close to be non-stationary. In this
class, the largest CF value (129%) was produced in 11/1996.
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In general, the SN fit works well for all classes and groups (Figure 5.14). Merging all
observations for each group (L = ALL), the shape parameter estimates are near zero because
these CF time series include normal and extreme events.

Comparing the J divergence with JS distance in Figure 5.15, the previous study of
η estimates prevalents for the magnitudes of these measures. Specifically for males, the
length class L = 17 cm produces the higher values of J divergence with the length classes
L = 13,16,18 cm (Figure 5.15a). In addition, JS distance highlights the discrepancy of the
length class L = 17 with L = 15 cm (Figure 5.15b). For females, J divergence produce clear
discrepancies for the length class L = 18 cm with respect to other classes (Figure 5.15c).
JS distance also highlight the discrepancy of length class L = 13 cm with classes L =

12,14,15,17,ALL cm (Figure 5.15d), since the high value of η estimate (Table 5.10).
Our results indicate that the body condition of male anchovies with higher lengths (L = 17

cm) is susceptible to environmental variability and coincides with the ending of the moderate-
strong El Niño event 91–92 reported by NOAA (2015). The reported CF value (39.9%)
are far from the ideal body condition and is produced by the permanence of warm waters,
which changed in to cold waters after 1992. For both males and females, the smaller lengths
(L = 13 cm) coincide with the beginning of the strong El Niño 97–98 event (NOAA, 2015).
In this case, reported CF values (125% for males and 129% for females) are higher than the
ideal body condition (fat condition), and appear before the warming.

This method could be applied to other species, too, depending on the fact that CF time
series follows a threshold autoregressive (TAR) process. For the dataset used here, the SN
model performed well under kurtosis and asymmetry presented in the CF time series. It
can be noted that shape parameter estimate can be affected by the considered period of
time series and the number of ENSO events. For the cases of the existence of seasonal
patterns and with presence of more extreme events, the TAR process can be generalized with
a drift term (Tong, 1990) and by considering a set of autoregressive covariables that involve
external/environmental factors, such as sea surface temperature, chlorophyll, plankton, and
others (Brosset et al., 2015b). Researchers should consider distributions that control extreme
observations, such as ST distribution (Azzalini and Capitanio, 2003, Branco and Dey, 2001).
However, the link of this distribution family with TAR process is not clear and requires more
investigation.

5.4.4 Normality test

We applied hypothesis testing developed in Section 3.6 to monthly CF time series. CF were
previously standardized, since the shape parameter η is not affected by a linear transformation
of the CF (Azzalini and Capitanio, 2013). Table 5.10 shows the η̂’s assuming an SN and
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MSN distribution based on the MLE method of Azzalini (2008) and Arrué et al. (2016),
respectively. For MSN, we considered the log-likelihood function of Eq. (3.39). In both
models, negative and positive values of η̂ correspond to asymmetry to the right and left,
respectively Contreras-Reyes (see Figure 5 of 2016). This means that CF of the above
mentioned classes are affected by extreme events. As expected, we find generally that for
low values of the empirical skewness index, the shape parameter of both distributions is close
to zero.

Since that SN model is not regular at η = 0, we used only the MSN model to perform
the test of normality and LRT for each sample data. The results of this analysis appear in
Table 5.11, and are not analogous for all the length classes in both groups. In fact, for the
group of males, the null hypothesis H0 : τ = 0 is not rejected, only in length classes 15 (95%
confidence level) and in class ALL (90% confidence level). In contrast, for the group of
females the null hypothesis is not rejected for length classes 12, 15, 17 (95% confidence
level) and in class ALL (90% confidence level). For both tests, we obtained similar decisions
on each time series.

According to Contreras-Reyes (2016), the time series in which the shape parameter is
close to zero or when the null hypothesis is not rejected, are influenced simultaneously by
both normal and extreme events as in the length class ALL, where all fish population is
included for the analysis. For length class 17 in males, for example, the CF is susceptible
to some atypical events such as the moderate-strong El Niño event between 1991 and 1992
(high negative empirical skewness and high empirical kurtosis). For length class 13 in both
sexes, the CF is susceptible to the strong El Niño event produced between 1997 and 1998.

5.5 Other applications

More recent applications have dealt with the calculus of Shannon entropy and mutual
information for SE distributions. In this sense, Ormerod (2011) addresses the variational
inference of SN distributions using the entropy measure as an approximation. Challis and
Barber (2012) considers the KL divergence minimisation problem between a given target
density and an approximated variational density, where the SN distribution is considered
as a special case. The work of Eltoft et al. (2012) is highlighted that analyze polarimetric
synthetic aperture radar (PolSAR) data assuming non-normal distributions, showing that non-
gaussian entropy produces the clearest discrimination of buildings and man-made structures
of a San Francisco area image. Kundu et al. (2013) considered the Lemma XX to develop
the Shannon entropy of Generalized multivariate Birnbaum–Saunders distributions. Main
et al. (2016) evaluated the local effect of asymmetry deviations from normality using the
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KL divergence measure of SN distribution, and then compared the local sensitivity with
Mardia’s and Malkovich-Afifi’s skewness indexes. They also agree on the use of the SN
model to regulate the asymmetry of an empirical distribution because it reflects the deviation
in a tractable way. Youssef et al. (2016) propose a fault detection and estimation approach
using SN KL divergence to cope with the negative effects due dimension reduction while
using Principal Component Analysis. De Queiroz et al. (2016) extended previous works
presented in this chapter focuses on the study of the Shannon entropy and KL divergence of
the multivariate log-canonical fundamental SN (LCFUSN) and canonical fundamental SN
(CFUSN) families of distributions, with the log SN (LSN) as a special case. They used the
Shannon entropy to compare models fitted to analyze monthly USA precipitation data, and
the KL divergence to cluster regions in the Atlantic ocean according to their air humidity
level. Godoi et al. (2017) presented a methodological application using exact expressions
of KL and J divergences between a ST and Student-t distribution (developed in Corollary
2.1 and Proposition 2.3 using the Lemma XX). They used the concentration function to
analyze departure from a symmetric baseline prior through multiplicative contamination prior
distributions for the location parameter in a Gaussian model. Madani et al. (2017) measured
the dissimilarity between original and estimated distributions through SN KL divergence
for firefighter’s tool, where the original distribution is related to target-items (i.e. fires and
humans supposed attracting the firefighters’ attention and thus their eye-fixation meeting
points).
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Table 5.1 P-values for Mardia’s goodness-of-fit test of multivariate normality applied to
the joint XY and to the X multivariate variables, and p-values for Shapiro’s test for the
Y marginal variables. All tests are for daily average transformation of the original data.
The p-values higher than the probability (0.05) related to a 5% confidence level lead to
multivariate normality used in the last column to compute the mutual information index,
I(X,Y ), for this distribution (the first and second largest values are marked in bold).

Monitored Stations H0 : β1,k = 0 H0 : β2,k = k(k+2) Shapiro’s test Normal
Yes (X) No (Y ) XY X XY X Y I(X,Y )

L,M,N,O,P,Q F 0.429 0.140 0.115 0.970
F,M,N,O,P,Q L 0.710 0.136 0.481 0.963
F,L,N,O,P,Q M 0.299 0.218 0.991 0.514
F,L,M,O,P,Q N 0.765 0.785 0.056 0.059 0.025 1.107
F,L,M,N,P,Q O 0.935 0.028 0.096 0.769
F,L,M,N,O,Q P 0.927 0.078 0.706 0.312
F,L,M,N,O,P Q 0.468 0.138 0.275 1.280
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Table 5.2 P-values for the Kolmogorov-Smirnov goodness-of-fit test of multivariate skew-
normality applied to marginal variables. The p-values marked in bold are higher than the
probability (0.05) related to a 5% confidence level.

s F L M N O P Q
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.004 0.000

16 0.005 0.017 0.026 0.013 0.026 0.001 0.009
24 0.060 0.000 0.096 0.000 0.102 0.002 0.000
32 0.913 0.382 0.945 0.297 0.534 0.361 0.167
40 0.170 0.711 0.944 0.483 0.746 0.255 0.770
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Table 5.3 Summary of results for SN and ST distributions and different network configura-
tions. The highest values for each transformation is marked in bold.

SN ST
s F L M N O P Q F L M N O P Q
1 1.348 1.539 0.963 1.370 1.425 0.959 1.492 4.021 4.259 3.463 3.930 4.032 3.652 4.230
8 1.800 2.189 1.498 1.680 1.995 1.145 2.261 3.700 3.980 3.325 3.561 3.880 2.874 4.122

16 1.752 1.997 1.425 1.665 1.931 0.895 2.187 3.338 3.543 2.993 3.327 3.529 2.376 3.766
24 1.293 1.353 0.926 1.324 1.326 0.490 1.498 2.857 2.916 2.477 2.920 2.919 1.915 3.088
32 1.530 1.687 1.257 1.585 1.683 0.634 1.873 2.974 3.142 2.743 3.026 3.046 2.122 3.362
40 1.530 1.674 1.299 1.626 1.655 0.548 1.872 2.932 3.115 2.716 3.021 3.042 2.072 3.341
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Table 5.4 KL divergences for pairs of clusters.

black (1) red (2) green (3) blue (4) violet (5) yellow (6) gray (7)
black (1) 0 0.178 0.149 0.008 0.262 0.041 0.835
red (2) 0.219 0 0.743 0.267 0.018 0.455 0.273

green (3) 0.181 0.601 0 0.102 0.909 0.038 1.688
blue (4) 0.015 0.234 0.095 0 0.374 0.015 0.981

violet (5) 0.212 0.018 0.721 0.269 0 0.437 0.216
yellow (6) 0.053 0.350 0.031 0.020 0.530 0 1.194
gray (7) 0.978 0.224 1.887 1.032 0.274 1.398 0
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Table 5.5 Mean and standard deviation (sd) from the normal fit, minimum (min), maximum
(max) and number of observations (N) for each cluster and for the full data (see ’Total’
below); SN MLE’s and their respective standard deviations (in brackets) for each and the full
cluster; τ and J(X ,Y0) values for each and the full cluster.

Cluster Descriptive Statistics SN fit
mean sd min max N ξ Ω η τ J(X ,Y0)

black (1) 3.427 0.655 2.0 6.6 4182 3.430 (0.010) 0.651 (0.008) 0.756 (0.020) 0.610 0.211
red (2) 3.924 0.769 2.1 8.8 962 3.927 (0.025) 0.766 (0.019) 0.445 (0.068) 0.389 0.092

green (3) 3.085 0.615 2.0 5.2 265 3.081 (0.038) 0.618 (0.030) 0.711 (0.105) 0.559 0.181
blue (4) 3.339 0.729 2.0 6.1 280 3.337 (0.043) 0.730 (0.035) 0.697 (0.101) 0.595 0.202

violet (5) 3.852 0.682 2.6 6.8 265 3.858 (0.041) 0.673 (0.033) 0.820 (0.067) 0.673 0.252
yellow (6) 3.215 0.666 2.1 5.2 215 3.201 (0.047) 0.683 (0.040) 0.805 (0.128) 0.665 0.247
gray (7) 4.447 0.695 2.7 6.9 332 4.447 (0.038) 0.694 (0.029) 0.453 (0.124) 0.378 0.087

Total 3.539 0.743 2.0 8.8 6584 3.539 (0.009) 0.743 (0.007) 0.731 (0.018) 0.629 0.224
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Table 5.6 J divergences for each pair of clusters. The statistic values and P-values of the
asymptotic test are given in brackets. Those marked in bold correspond to the P-values
higher than a probability 0.04 related to a 4 per cent significance level.

black (1) red (2) green (3) blue (4) violet (5) yellow (6) gray (7)
black (1) 0 0.397 0.330 0.023 0.475 0.093 1.814

(0; 1) (311; 0) (82; 0) (6.1; 0.106) (118; 0) (19; 0) (558; 0)
red (2) 0.397 0 1.344 0.501 0.037 0.805 0.497

(311; 0) (0; 1) (279; 0) (109; 0) (7.6; 0.055) (142; 0) (123; 0)
green (3) 0.330 1.344 0 0.197 1.630 0.069 3.575

(82; 0) (279; 0) (0; 1) (27; 0) (216; 0) (8.1; 0.043) (527; 0)
blue (4) 0.023 0.501 0.197 0 0.642 0.035 2.014

(6.1; 0.106) (109; 0) (27; 0) (0; 1) (88; 0) (4.2; 0.239) (306; 0)
violet (5) 0.475 0.037 1.630 0.642 0 0.967 0.490

(118; 0) (7.6; 0.055) (216; 0) (88; 0) (0; 1) (115; 0) (72; 0)
yellow (6) 0.093 0.805 0.069 0.035 0.967 0 2.593

(19; 0) (142; 0) (8.1; 0.043) (4.2; 0.239) (115; 0) (0; 1) (338; 0)
gray (7) 1.814 0.497 3.575 2.014 0.490 2.593 0

(558; 0) (123; 0) (527; 0) (306; 0) (72; 0) (338; 0) (0; 1)
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Table 5.7 Summary of estimates α ′ = logα and β with their respective standard errors in
parenthesis, for each length-weight log-transformed relationships of Eq. (5.2) and sex.

Sex parameter estimate (SE) t value p value R2(%)
Male α ′ -11.619 (0.202) -57.53 < 0.01 92.6

β 3.064 (0.040) 77.58 < 0.01
Female α ′ -12.413 (0.176) -70.43 < 0.01 94.7

β 3.218 (0.034) 94.95 < 0.01
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Table 5.8 Summary of FMSN and FMN clustering for swordfish data. For each model and
number of clusters m the misclassification (MC), normal skill (NSS), Heidke skill (HSS),
and Hanssen–Kuipers (HK) scores appear.

Male Female
Model m MC NSS HSS HK AIC BIC MC NSS HSS HK AIC BIC
FMSN 2 0.70 0.30 0.01 0.01 7742.24 7805.03 0.75 0.25 0.00 0.00 8834.89 8898.32

3 0.77 0.23 -0.05 -0.04 7754.18 7850.46 0.87 0.13 -0.05 -0.04 8844.91 8942.17
4 0.62 0.38 0.14 0.10 7741.22 7871.00 0.89 0.11 -0.09 -0.07 8838.63 8969.71
5 0.42 0.58 0.42 0.30 7751.47 7914.73 0.90 0.10 -0.10 -0.08 8847.75 9012.67
6 0.45 0.55 0.43 0.35 7760.76 7957.51 0.83 0.17 -0.04 -0.03 8864.74 9063.48
7 0.29 0.71 0.61 0.46 7770.85 8001.10 0.35 0.65 0.56 0.46 8865.46 9098.03
8 0.51 0.49 0.37 0.30 7783.31 8047.05 0.69 0.31 0.14 0.11 8879.20 9145.59
9 0.65 0.35 0.22 0.18 7769.48 8066.70 0.49 0.51 0.42 0.35 8885.98 9186.20
10 - - - - - - 0.59 0.41 0.31 0.27 8897.56 9231.61
11 - - - - - - 0.65 0.35 0.26 0.22 8900.87 9268.75

FMN 2 0.70 0.30 0.02 0.01 7818.79 7864.84 0.75 0.25 0.00 0.00 8914.32 8960.83
3 0.78 0.22 -0.04 -0.03 7737.23 7808.40 0.88 0.12 -0.03 -0.03 8848.43 8920.31
4 0.52 0.48 0.28 0.20 7729.77 7826.05 0.87 0.13 -0.08 -0.06 8818.25 8915.51
5 0.43 0.57 0.43 0.32 7733.33 7854.73 0.82 0.18 -0.05 -0.04 8820.12 8942.74
6 0.43 0.57 0.46 0.36 7744.00 7890.52 0.70 0.30 0.11 0.09 8831.16 8979.16
7 0.53 0.47 0.35 0.29 7738.41 7910.04 0.66 0.34 0.17 0.14 8839.63 9013.00
8 0.52 0.48 0.36 0.29 7750.27 7947.02 0.45 0.55 0.47 0.39 8849.82 9048.56
9 0.85 0.15 -0.01 -0.01 7751.24 7973.11 0.50 0.50 0.41 0.35 8855.10 9079.21
10 - - - - - - 0.78 0.22 0.11 0.10 8857.49 9106.97
11 - - - - - - 0.62 0.38 0.29 0.25 8852.37 9127.22
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Table 5.9 Linear regression fit parameters, α ′ = logα and β of Eq. (5.2), for length-weight
log-transformed relationships with its respective standard errors in parenthesis, for each
length class L and group j.

Group ( j) parameter estimate (SE) t value p value R2(%)
Males (1) α ′ -4.775 (0.005) -942.1 < 0.01 83

β 2.923 (0.002) 1569.6 < 0.01
Females (2) α ′ -4.791 (0.005) -955.9 < 0.01 84

β 2.930 (0.002) 1602.9 < 0.01
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Table 5.10 Shape parameter estimates (η̂) of SN and MSN models for each sex and length
class L, together with its respective standard deviations (s.d). Sample size (n), empirical

skewness (
√

b̂1) and kurtosis (b̂2), and log-likelihood function ℓ(η̂) for each model fit are
also reported.

SN MSN

Sex L n
√

b̂1 b̂2 η̂ s.d ℓ(η̂) η̂ s.d ℓ(η̂)

Male 12 213 -0.220 3.723 -1.065 0.147 -301.066 -1.717 0.662 -235.783
13 238 0.658 5.120 1.778 0.134 -332.638 2.617 0.447 -359.291
14 250 -0.147 2.885 -1.086 0.166 -367.935 0.459 0.542 -342.881
15 251 -0.030 2.755 -0.442 0.150 -369.834 0.065 0.386 -450.489
16 251 0.307 3.138 1.616 0.149 -367.542 2.565 0.415 -354.073
17 221 -3.461 27.958 -3.092 0.080 -285.125 -3.597 0.524 -312.701
18 180 0.264 3.001 1.368 0.201 -253.988 2.821 0.643 -269.193
All 252 0.068 2.687 0.721 0.178 -371.192 -0.287 0.517 -131.335

Female 12 198 0.041 2.738 0.552 0.196 -280.434 -0.142 0.386 -209.551
13 228 0.917 6.103 2.267 0.128 -315.305 3.101 0.524 -326.665
14 250 0.190 2.907 1.242 0.157 -367.555 1.459 0.867 -331.373
15 250 0.076 2.672 0.728 0.174 -368.344 -0.189 0.383 -425.212
16 251 0.349 3.091 1.702 0.155 -367.160 2.631 0.475 -346.705
17 246 -0.056 3.115 -0.689 0.149 -348.487 0.041 0.754 -373.068
18 208 -0.539 4.349 -1.581 0.136 -291.484 -2.223 0.472 -313.160
All 252 0.072 2.764 0.748 0.172 -371.174 -0.267 0.401 -110.108
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Table 5.11 MSN Shannon entropy (H) and negentropy (N) for each sex and length class L
using expansion series of cumulants. For each time series, the KL divergence K0 = K(Zτ̂ ,Z0),
statistic 2nK0 of Eq. (3.37), Likelihood Ratio Test (LRT) statistic, and its respective p-values
are reported. All values reported consider estimates η̂ (for τ̂ = |η̂ |) and sample size n from
Table 5.10.

Asymptotic test LRT
Sex L H N K0 2nK0 p-value Statistic p-value
Male 12 1.187 -0.074 0.232 98.950 < 0.001 98.304 < 0.001

13 1.030 -0.063 0.389 185.087 < 0.001 180.469 < 0.001
14 1.396 -0.008 0.023 11.699 0.001 11.693 0.001
15 1.418 0.000 0.001 0.242 0.623 0.246 0.620
16 1.038 -0.066 0.381 198.700 < 0.001 193.567 < 0.001
17 0.873 0.050 0.546 241.472 < 0.001 211.924 < 0.001
18 0.999 -0.047 0.420 151.341 < 0.001 146.427 < 0.001
All 1.410 -0.003 0.009 4.682 0.031 4.673 0.030

Female 12 1.417 -0.001 0.002 0.873 0.350 0.903 0.342
13 0.956 -0.019 0.463 211.320 < 0.001 198.516 < 0.001
14 1.237 -0.062 0.183 94.892 < 0.001 93.300 < 0.001
15 1.415 -0.001 0.004 2.027 0.155 2.071 0.150
16 1.028 -0.062 0.391 204.117 < 0.001 199.015 < 0.001
17 1.418 0.000 2e-04 0.091 0.763 0.089 0.765
18 1.095 -0.080 0.324 134.967 < 0.001 133.629 < 0.001
All 1.411 -0.003 0.008 4.058 0.044 4.112 0.042
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Fig. 5.1 Left: Graphic of Original Data (s = 1) with the transformations of moving average
(MAs) for s = {8,16,24,32} hours and daily average (DA) for 01/03/2006 to 07/03/2006 of
station L. Right: Several histograms for the transformed ozone data mentioned before.
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Fig. 5.2 Multivariate normal, SN, and ST PP-plots of: a) original data (s= 1); and transformed
data with b) s = 8, c) s = 16, d) s = 24, e) s = 32 and f) s = 40.
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Fig. 5.6 Plots of SN fits (in red) and QQ-plots of Normal and SN distributions for clusters
black (1), red (2), green (3) and blue (4).
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Fig. 5.7 Plots of SN fits (in red) and QQ-plots of Normal and SN distributions for clusters
violet (5), yellow (6), gray (7) and all observations.
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Fig. 5.8 Scheme of steps (a)–(d) for swordfish data.
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Fig. 5.9 Length-weight log-transformed relationship and regression fit (red solid line) for (a)
male and (b) female swordfish.
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Fig. 5.15 SN J divergence for (a) males and (b) females, and JS distance for (c) males and (d)
females. This measures consider the shape parameter estimates of Table 5.10 for each group
j and length L.



Chapter 6

Concluding remarks

6.1 Skew-elliptical distributions

We have proposed an alternative way to compute the Shannon entropy and mutual information
index for data with skewness and heavy tails. The calculation of this index produces a similar
expression as for the normal and Student’s t cases except for a new term represented by a
one dimensional integral that can easily and quickly be computed by standard numerical
methods. Moreover, a numerical study showed the convergence of this integral and in fact
of the SN and ST mutual information indexes. Finally, an analysis of an optimal network
design of a classical pollutant was presented. The principal objective is to choose a network
design in an optimal way through established methods of maximizing Shannon’s index. We
conclude from this analysis that the consideration of skewness and heavy tails in the model
to fit the untransformed data produces different conclusions/decisions than those obtained
by applying the normal model to the transformed data. Moreover, data transformation to
achieve multivariate normality is known to be challenging. The correct fit of the original data
ensures the optimal maximization of the mutual information index and determines a better
optimization network design. In this work, we have given the tools to compute this new
information index. Others methods could be derived from this index, for example such as the
effectiveness index, or to remove more than one station at a time (Silva and Quiroz, 2003).

The SE entropy and mutual information index can be explored further by considering the
whole class of selection elliptical distributions introduced by Arellano-Valle et al. (2006). In
fact, since a selection random vector ZZZ ∈ Rk is defined by ZZZ d

= (V | U ∈C), where U ∈ Rl

and V ∈ Rk are correlated vectors and C ⊂ Rl is a proper selection set, we have that the
probability density function pZZZ of ZZZ having a selection distribution (SLCT ) is (provided that
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V has a density pV):

pZZZ(zzz) = pV(zzz)
P(U ∈C | V = zzz)

P(U ∈C)
.

Therefore, the entropy of ZZZ ∼ SLCTk is

H(ZZZ) = HV −E[log{P(U ∈C | V)}− log{P(U ∈C)}].

The last term in the above selection entropy is justly the contribution of the selection
mechanism. For selection SE distributions, e.g., we have V ∼ ECk(xV,ΩVV,h(k)) and
U | V ∼ ECl(ξ U·V,ΩUU·V,h

(l)
SV
), where ξ U·V = ξ U +ΩUVΩ

−1(V− ξ V), ΩUU·V = ΩUU −
ΩUVΩ

−1
VVΩVU and SV = (V−ξ V)

⊤Ω
−1
VV(V−ξ V). Hence,

HV =
1
2

log |ΩVV|−E{log h(k)(SV)},

while the computation of the contribution of the selection mechanism requires the specifi-
cation of the selection set C. In our case, we have l = 1, ξ U = 0, ΩUU = 1, ΩVU = δ and
C = (0,∞), so that the probability density function of the selection random vector ZZZ reduces
to (2.3), with ξ = xV, Ω=ΩVV and η =Ω

−1
δ/
√

1−δ
⊤

Ω
−1

δ , and therefore SLCT entropy
becomes SE entropy as in Proposition 1.

In addition, we have presented a methodology to compute the KL divergence for multi-
variate data presenting skewness, specifically, for data following a multivariate skew-normal
distribution. The calculation of this measure is semi-analytical, since it is the sum of two
analytical terms, one corresponding to the multivariate normal KL divergence and the other
depending on the location, dispersion and shape parameters, and a third term which must
be computed numerically and which was reduced from a multidimensional integral to an
integral in only one dimension. Numerical experiments have shown that the performance
of this measure is consistent with its theoretical properties. Additionally, we have derived
expressions for the J divergence between different multivariate skew-normal distributions,
and in particular for the J divergence between the skew-normal and normal distributions. The
presented entropy and KL divergence concepts for this class of distributions are necessary
to compute other information tools as mutual information. The proposed methodology is
applied to aftershocks produced by the Maule earthquake which occurred on February 27
of 2010. The results shown that the proposed measures are useful tools for comparing the
distributions of magnitudes of events related to the regions near the epicenter. We also con-
sider an asymptotic homogeneity test for the cluster distributions under the skew-normality
assumption and, consequently, confirm the founded results in a consistent form.
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A measure to compare two multivariate ST densities is presented based on the approxi-
mated KL divergence. This has some advantages such as: the detection of skewness presence
and heavy-tails within the data; it is of rapid and easy computational implementation, because
it is an explicit form of the divergence where there is an expected value representing an
integral in one dimension. On the another hand, many applications should be addressed as
outlier detection, influential data analysis, hypothesis testing, variational inference, ensemble
correlation matrices, discriminant analysis and clustering; and some applications on real data
in the field of optimal network design, satellite image processing, region-of-interest tracking
in video sequences and image registration.

6.2 Finite mixture of skew-normal distributions

Some solutions to compute the Rényi entropy with discrete α-order and for a wide range
of asymmetric distributions are presented. Specifically, we find a closed expression for SN,
ESN, and TSN distributions. Additional inequalities for SN and ESN entropies were reported.
Lower and upper bounds of the Shannon and Rényi entropies for FMSN distributions were
derived. Using such a pair of bounds some kind of confidence interval for the approximate
entropy value can be calculated, where the average between these values can be used as an
approximation of the entropy. We presented practical (bounds) and theoretical (bounds and
asymptotic expression) results for Rényi entropy. In the case of practical results, the first
upper bound deals only with the density parameters and the second one with the density and
mixing weights parameters. In the case of theoretical results, the bounds and approximations
are based on Lp space metric and multinomial coefficients.

Inserting the ML estimation (fixed) parameters represents the simplest evaluation of these
bounds (Contreras-Reyes and Arellano-Valle, 2012). However, between the lower and upper
Rényi entropy bounds exists a considerable distance. For this reason, further research must
consider the exact expression and asymptotic approximation presented in this work. For
these, an algorithm to identify the multinomial coefficients restricted to conditions (3.15)
and (3.18), respectively, could be developed. In addition, the Bayesian approach allows for
a direct estimation of the entropies, depending on the accuracy of prior parameters, where
performance can be substantially improved compared to ML or nonparametric estimators
(Gupta and Srivastava, 2010).

The results presented are valid for the SN case, taking the shape parameters set η =

(0, . . . ,0), for integer values of α (Contreras-Reyes, 2015). However, numerical algorithms
can be applied for real values of α (α > 2), but that requires more challenging computational
work. In addition, Proposition 2 and Lemma 1, 3 and 9 are also valid for other continuous
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densities where the Rényi entropies of the component exist. We hope the Rényi entropy
developments in finite mixtures of densities can stimulate more research in the future, for
more flexible densities such as ST distribution (Azzalini and Capitanio, 2003, Gupta, 2003).

We applied 2-dimensional length-weight data for the determination of swordfish age. We
considered a length-weight dataset instead of the usual length (considered by Roa-Ureta,
2010) to determine the number of clusters, and posteriorly we compared it with the real
observations obtained by the procedure of Cerna (2009). The best results were obtained using
the Rényi entropy, as an average between upper and lower bounds, over Shannon entropy and
information criteria. Additionally, the classification rates and consistency scores of FMSN
models showed better results versus the FMN model.

Wrongly classified observations arise with older species because they produce higher
variability in the length-weight relationship. Moreover, the age determination in these age
classes is difficult to obtain for the reasons mentioned in Section 5.3. We encourage anal-fins
readers to consider the proposed methodology to compare their results with this statistical
methodology, especially for the revision of older species data.

6.3 Generalized skew-normal distributions

We have presented the methodology to compute the Shannon entropy, the negentropy, and
the KL and J divergences for a broad family of asymmetric distributions with normal
kernel called Generalized Skew-Normal distributions. Our method considers asymptotic
expansions regarding moments and cumulants for two particular cases: the SN and MSN
distributions. We then measured the degrees of disparity of these distributions from the
normal distribution by using exact expressions for the negentropy in terms of moments
and cumulants. Additionally, given the regularity conditions accomplished by the MSN
distribution, normality was tested based on the modified skew-normal distribution. This
test considered the asymptotic behavior of the KL divergence, which is determined by the
negentropy for normality disparity.

Numerical results showed that the Shannon entropy and negentropy of the modified
skew-normal distribution is better approximated than SN one, at least for a wider range of
the shape parameter. For small to moderate values of the asymmetry parameter, where the
approximations are appropriate, we find that expansions series converge from the fourth
moment/cummulant to greater, as in Gram–Charlier and Edgeworth expansion methods
(Hyvärinen et al., 2001). For large values of the skewness parameter, where the expansions
are inappropriate, the functions related to negentropy are not well approximated by Taylor
expansions around 0, produced by a divergence in the moment and cummulant terms, i.e.,
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the Taylor expansions for the expected values of the functions ζ0(τZτ) and ζ0{τu(Zτ)} (SN
and MSN case, respectively) if τ = |η | is too large. When this happens, the normal cdf,
Φ(τZτ) and Φ{τu(Zτ)} (SN and MSN case, respectively), tends to 1, since according to the
stochastic representation in (2.26), for large values of τ , the distribution of Zτ converges
to the standardized half-normal distribution (see property 1 of Section 2.4.1 or Beaver and
Arnold, 2000).

However, the normality test considered in the application used skewness parameters
inside the appropriate range. Furthermore, we plan to investigate the negentropy of the
modified skew-normal-Cauchy distribution or similar models. In addition, although the
approximations are appropriate over the range of variation of the asymmetry admitted by
both models, more work should be done in order to improve the asymptotic approximations
for a greater range of the skewness parameter values. Besides, this is not an easy task since
generally it is difficult to approximate KL divergences involving asymmetric and heavy-tailed
distributions (Stehlík et al., 2017).

The statistical application related to condition factor time series of anchovies off northern
Chile is given. The results show that the proposed methodology serves to detect non-normal
events in these time series, which produces an empirical distribution with high well presence
of skewness (Contreras-Reyes, 2016). The proposed test for normality is therefore useful
to detect anomalies in condition factor time series, linked to food deficit (positive shape
parameter) or food abundance (negative shape parameter) influenced by environmental
conditions.
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Appendix A

Proof of Lemma 1. The result is immediate from E[log{pZZZ(ZZZ)}] = −(1/2) log |Ω|+
E[log{pZZZ0(ZZZ0)}]. �

Proof of Proposition 2. Let ZZZc = ΓZZZ0 and W = γT ZZZc, where Γ ∈ Rk×k is an orthogonal
matrix such that Γη̄ = ∥η̄∥γ and the vector γ ∈Rk is such that γ⊤η̄ = ∥η̄∥ and ∥γ∥= 1. Note
that W = γ⊤ZZZc = γ⊤ZZZ0 and Sc = ∥ZZZc∥2 = ∥ZZZ0∥2 = S since ΓΓ

⊤ = Ik. Thus, considering
also that ZZZ0 = Γ

⊤ZZZc and the absolute value of the determinant of Γ
⊤ equals 1, the Jacobian

method yields fZZZc(zzz) = 2h(k)(s)F(∥η̄∥w,h(1)s ), where s = ∥zzzT zzz∥2 and w = γ⊤zzz, i.e., ZZZc ∼
SEk(0, Ik,∥η̄∥γ,h(k+1)), and by Proposition 4.1 in Arellano-Valle and Genton (2010), we
have W = γ⊤ZZZc ∼ SE1(0,1,∥η̄∥,h(k+1)). On the other hand, since ZZZc

d
= δ̄ |X0|+ (Ik −

δ̄ δ̄
⊤
)1/2X (see e.g. Arellano-Valle and Azzalini, 2006, Arellano-Valle et al., 2006), where

δ̄ = η̄/
√

1+∥η̄∥2 and(
X
X0

)
∼ ECk+1

((
0
0

)
,

(
Ik 0
0⊤ 1

)
,h(k+1)

)
,

we have W d
= ∥δ̄∥|X0|+

√
1−∥δ̄∥2X1, where X1 = γ⊤X ∼ EC1(0,1,h(1)) is distributed as

the first component of X. Thus, since we can assume without loss of generality that γ is the
first column of Γ, we find ZZZc

d
= γW +(Ik − γγ⊤)1/2X = (W,X2, . . . ,Xk)

⊤, where X2, . . . ,Xk

are the last k−1 components of X. Consider now the transformation U1 =W, U j = X j, 2 ≤
j ≤ k − 1, and R = (W 2 + ∑

k
j=2 X2

j )
1/2. This transformation has two inverses given by

w = u1, x j = u j, 2 ≤ j ≤ k−1, and xk =±(r2 −∑
k−1
j=1 u2

j)
1/2. The corresponding Jacobians

are J1 = r/(r2 −∑
k−1
j=1 u2

j)
1/2 and J2 =−J1. Thus,we obtain for k ≥ 2 that

fU1,U2,...,Uk−1,R(u1,u2, . . . ,uk−1,r) =
4rh(k)(r2)F(1)(∥η̄∥u1;h(1)r2 )√

(r2 −u2
1)(r

2 −∑
k−1
j=1 u2

j)
,
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where ∑
k−1
j=2 u2

j < r2 −u2
1, |u1|< r and r > 0. Considering now the change of variables

w j =
u j√

r2 −u2
1

=
u j

∑
k
j=2 u2

j
, 2 ≤ j ≤ k−1, k ≥ 2,

we have

fU1,R(u1,r) = 4rk−2(1−
u2

1
r2 )

( k−1
2 −1)h(k)(r2)F(∥η̄∥u1;h(1)r2 )

×
∫
{w2,...,wk−1:0<∑

k−1
j=2 w2

j<1}

(
1−

k−1

∑
j=2

w2
j

)−1/2

dw2 · · ·dwk−1

=
4πk/2−1

Γ( k
2)

rk−2
(

1−
u2

1
r2

)( k−1
2 −1)

h(k)(r2)F(∥η̄∥u1;h(1)r2 ).

Thus, the change of variables (W,S) = (U1,R2) implies the result. �

Proof of Proposition 3. Let ZZZ0 = Ω
−1/2(ZZZ−ξ ). By Lemmas 1 and 3 and by (2.5), we have

E[log{pZZZ(ZZZ)}] = −(1/2) log |Ω|+E[log{2φk(ZZZ0)Φ(η̄⊤ZZZ0)}]
= −(1/2) log |Ω|+E[log{φk(ZZZ0)}]+E[log{2Φ(η̄⊤ZZZ0)}]
= −(1/2) log |Ω|+E[log{φk(ZZZ0N)}]︸ ︷︷ ︸

−H(ZZZN)

+E[log{2Φ(∥η̄∥W )}],

because E[log{φk(ZZZ0)}] = E[log{φk(ZZZ0N)}], since the function φk is even, and because
E[log{2Φ(η̄⊤ZZZ0)}] = E[log{2Φ(∥η̄∥W )}], since η̄⊤ZZZ0

d
= ∥η̄∥W . �

Proof of Proposition 5. To compute the integral
∫
[ f (zzz)]αdzzz, we use the change of variables

Ωα = α−1Ω and ZZZ0 = Ω
−1/2
α (ZZZ−µ), ZZZ0 ∼ SNd(0, Id, η̃), η̃ = Ω

1/2
α η . We shall use the fact

that |Ωα |= α−d|Ω| for k-dimensional matrices (Nock and Nielsen, 2012). Then, according
to Lemma 3, the integral

∫
[ f (zzz)]αdzzz should be rewritten in terms of an expected value with

respect to a standardized normal density as∫
Rk
[ f (zzz)]αdzzz =

2α

|Ω|α/2 |Ωα |1/2(2π)(1−α)d/2E{[Φ1(η̃
⊤ZZZ0)]

α}

=
2α

αd/2 (2π)(1−α)d/2|Ω|(1−α)/2E{[Φ1(W )]α}.

where W ∼ SN1(0,∥η̃∥2,∥η̃∥) with ∥η̃∥ = η̃
⊤

η̃ (Arellano-Valle et al., 2013, Contreras-
Reyes and Arellano-Valle, 2012), i.e., the expected value E{[Φ1(η̃

⊤ZZZ0)]
α} is reduced from
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d dimensions to one dimension (Arellano-Valle et al., 2013, Contreras-Reyes, 2014). By
Lemma 2 and setting µ = 0, Ω = ∥η̃∥2, D = ∥η̃∥, r = α , A = s = h(w) = 1; we obtain
Ã = Iα+1 and D̃ = (1α ,∥η̃∥)⊤. Therefore, the expected value of the integral is reduced to

E{[Φ1(W )]α}= Φα+1(0;0, Iα+1 +∥η̃∥2D̃⊤D̃)

Φ1(0;0,1+∥η̃∥4)
. �

Proof of Corollary 1.

(i) Follows from (1.8) and Proposition 5.

(ii) See Proposition 3.

(iii) Right side: see Contreras-Reyes and Arellano-Valle (2012). Left side: consider the
nonsymmetrical entropy of Liu (2009) given by

S(u) =−
∫
Rk

f (u)log[β (u) f (u)]du, (A.1)

where f (u) is the probability density function of a normal variable u. By choosing
β (u) = 2Φ1(η

⊤Ω
−1/2(u− µ)), u = ZZZN , it follows that E{log[β (ZZZN)]} = log(2)+

Φ1(0) = (1/2) ln(4e) (see Proposition 4 of Azzalini and Dalla-Valle, 1996). Then, as
E{log[β (ZZZ)]} ≤ 2E{log[β (ZZZN)]}, the result is obtained.

(iv) Follows from properties (i), (ii) and (1.6). �

Proof of Lemma 4.

(i) See e.g. Arellano-Valle and Genton (2005) and Arellano-Valle and Azzalini (2006).

(ii) It is straightforward from part (i).

(iii) It comes from (ii) and the well-known fact that E{(ZZZ−a)⊤B(ZZZ−a)}= tr{BE(ZZZZZZ⊤)}−
2a⊤BE(ZZZ)+a⊤Ba, see also Genton et al. (2001).

(iv) It follows from the part (i) of this lemma that η̃
⊤(ZZZ − ξ̃ )

d
= η̃

⊤(ξ − ξ̃ )+ η̃
⊤

δ |U0|+
η̃
⊤U. Since η̃

⊤U ∼ N1(0, η̃⊤
Ωη̃

⊤− (η̃⊤
δδ )2), which is independent of U0, then

we can write η̃
⊤U =

√
1−δ 2

0 U1, where δ0 = η̃
⊤

δ/

√
η̃
⊤

Ωη̃ and U1 ∼ N1(0,1) and

is independent of U0. Hence, we obtain η̃
⊤(ZZZ − ξ̃ )

d
= η̃

⊤(ξ − ξ̃ ) +

√
η̃
⊤

Ωη̃ Z0,

where Z0 = δ̃ |U0|+
√

1−δ 2
0 U1. Since Z0 ∼ SN1(0,1,η0), where η0 = δ0/

√
1−δ 2

0 =
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η̃
⊤

δ/
√

η̃
⊤

Ωη̃ − (η̃⊤
δδ )2, the proof follows. �

Proof of Lemma 5. By (2.4) we have for the logarithm of the pdf of Y ∼ SNk(ξ 2,Ω2,η2)

that

log fY(x) = logφk(x;ξ 2,Ω2)+ log[2Φ{η
⊤
2 (x−ξ 2)}]

= −1
2

{
log{(2π)k|Ω2|}+(x−ξ 2)

⊤
Ω

−1
2 (x−ξ 2)

}
+ log[2Φ{η

⊤
2 (x−ξ 2)}].

Thus, since by (1.12) CH(X,Y) = −E[log fY(X)], we have by applying the Lemma 4(iii)
with ZZZ replaced by X, a = ξ 2 and B = Ω

−1
2 that

CH(X,Y) =
1
2

{
k log(2π)+ log |Ω2|+E{(X−ξ 2)

⊤
Ω

−1
2 (X−ξ 2)}

}
−E[log{2Φ(η⊤

2 (X−ξ 2))}]

=
1
2

{
k log(2π)+ log |Ω2|+ tr(Ω2

−1
Ω1)+(ξ 1 −ξ 2)

⊤
Ω

−1
2 (ξ 1 −ξ 2)

+2

√
2
π
(ξ 1 −ξ 2)

⊤
Ω

−1
2 δ 1

}
−E[log{2Φ(η⊤

2 (X−ξ 2))}]

=
1
2

{
k log(2π)+ log |Ω2|+ tr(Ω2

−1
Ω1)+(ξ 1 −ξ 2)

⊤
Ω

−1
2 (ξ 1 −ξ 2)

}
+

√
2
π
(ξ 1 −ξ 2)

⊤
Ω

−1
2 δ 1 −E[log{2Φ(η⊤

2 (X−ξ 2))}].

From Lemma 4(iii) we find that the random variable η⊤
2 (X−ξ 2) has the same distribution

of W21 in (3.9). Thus, the proof follows by noting that

CH(X0,Y0) = −E[logφk(X0;ξ 2,Ω2)]

=
1
2

{
k log(2π)+ log |Ω2|+ tr(Ω2

−1
Ω1)+(ξ 1 −ξ 2)

⊤
Ω

−1
2 (ξ 1 −ξ 2)

}
.�

Proof of Proposition 6. Note first by Lemma 5 that H(X) =CH(X,X) is given by

H(X) =
1
2
{k+ k log(2π)+ log |Ω1|}−E[log{2Φ(η⊤

1 (X−ξ 1))}]

= H(X0)−E[log{2Φ(η⊤
1 (X−ξ 1))}],

where H(X0) = CH(X0,X0) =
1
2 {k+ k log(2π)+ log |Ω1|} and by the property (iii) of

the Lemma 4 we have η⊤
1 (X− ξ 1)

d
= W11. Thus, the proof follows from the fact that
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K(X,Y) =CH(X,Y)−H(X). �

Proof of Proposition 8. Considering the first entropy of (4.7) and (2.25), we get

H
(

X +Y
2

)
= −

∫
∞

−∞

φ(x)Φ(η1x) log{φ(x)[Φ(η1x)+Φ(η2x)]}dx,

−
∫

∞

−∞

φ(x)Φ(η2x) log{φ(x)[Φ(η1x)+Φ(η2x)]}dx,

= − 1
2

E[log φ(x)]− 1
2

E[log φ(y)]− 1
2

E[log{Φ(η1x)+Φ(η2x)}]

− 1
2

E[log{Φ(η1y)+Φ(η2y)}].

For the first expected value of the last expression, we have E[log φ(x)] =−(1/2)E[log(2π)+

X2] =−(1/2)[log(2π)+1] =−H(U) = E[log φ(y)]. Then,

H
(

X +Y
2

)
= H(U)− 1

2
E[log{Φ(η1x)+Φ(η2x)}]− 1

2
E[log{Φ(η1y)+Φ(η2y)}].

Finally, by replacing (3) (case k = 1) and the last result in (4.7), the JS distance is obtained.
�

Proof of Proposition 9.

(i) For any finite mixture f (x; θ̃θθ ,π) = ∑
m
i=1 πi f (x;θθθ i), where θθθ i is the associated parameter

set of each i-th component f (x;θθθ i), θ̃θθ = (θθθ 1, . . . ,θθθ m), πi ≥ 0, ∑
m
i=1 πi = 1, and X ∈Rk

not necessarily normal with non-zero location vector and dispersion matrix Λ. Then,

m

∑
i=1

πi H[X;θθθ i]≤ H[X; θ̃θθ ]≤ 1
2

ln{(2πe)k|Λ|}. (A.2)

For a proof of (A.2), see pp. 27 and 663 of Cover and Thomas (2006). Basically, the
fact that g(t)=−log t is a concave function (−g(t) is convex) allows the use of Jensen’s
inequality. Then, considering the location vector (2.11) and dispersion matrix (2.12),
we have the inequalities H[Y; θ̃θθ ]≤Aupper and H[Y; θ̃θθ ]≥∑

m
i=1 πi H[Y;θθθ i]. Considering

the Proposition 3 and the condition ∑
m
i=1 πi = 1, we prove the left side of the inequality.

(ii) Left side: by the property of log concavity for skew-normal densities (Gupta and Brown,
2001) and employing Jensen’s inequality Cover and Thomas (2006), the proof is
analogous to Theorem 2 of Huber et al. (2008). Right side: see Theorem 3 of Huber
et al. (2008). �
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Proof of Lemma 6. Consider the Proposition 1 (B1) of Bennett (1986). Let p ≥ 1, then for
a αth-order, 1 < α ≤ p, we have

f (y; θ̃θθ ,π)α =

[
m

∑
i=1

πi f (y;θθθ i)

]α

(B1)

≥

(
m

∑
i=1

f (y;θθθ i)
p

)α

p −1[m−1

∑
i=1

{
i1−

α

p

(
i

∑
k=1

πk

)α (
f (y;θθθ i)

p − f (y;θθθ i+1)
p
)}

+m1−α

p

(
m

∑
k=1

πk

)α

f (y;θθθ m)
p

]
. (A.3)

By choosing p = α related to condition (iii) of Proposition 1 of Bennett (1986) in (A.3), the
following equality holds

f (y; θ̃θθ ,π)α ≥ f (y;θθθ m)
α +

m−1

∑
i=1

{(
i

∑
k=1

πk

)α (
f (y;θθθ i)

α − f (y;θθθ i+1)
α

)}
. (A.4)

The conditions (i), (ii) and (iv) of Proposition 1 of Bennett (1986) can not be accomplished
given the Rényi entropy conditions of (1.6), thus the equality in (A.4) is not accomplished.
Finally, integrating both sides of (A.4) the result is obtained. �

Proof of Lemma 7. Stirling’s approximation (3.16) yields

Uα(α̃|Q)≈ eαH(α̃|Q), (A.5)

as α → ∞. By replacing (A.5) in (3.14), we obtain∫
Rk

f (y; θ̃θθ ,π)αdy ≈
∫
Rk

∑
ki∈A

eαH(α̃|Q)dy,

=
∫
Rk

∑
ki∈A

exp

{
−α

m

∑
i=1

αi log
(

αi

Qi(y)

)}
dy,

=
∫
Rk

∑
ki∈A

exp

{
m

∑
i=1

ln
(

αi

Qi(y)

)−ααi
}

dy,

=
∫
Rk

∑
ki∈A

m

∏
i=1

(
αi

Qi(y)

)−ki

dy,

= ∑
ki∈A

[
m

∏
i=1

α
−ki
i

][∫
Rk

m

∏
i=1

Qi(y)kidy

]
.
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Finally, by replacing Qi(y) = πi f (y;θθθ i) in the last expression, the result is obtained. �

Proof of Lemma 8. From (3.14), we have

∫
Rk

f (y; θ̃θθ ,π)αdy = ∑
ki∈A

α!
k1! · · ·km!

(
m

∏
i=1

π
ki
i

)∫
Rk

m

∏
i=1

f (y;θθθ i)
kidy. (A.6)

(i) For the integral of (A.6), we applied the GH inequality (Finner, 1992) for m products to
obtain

∫
Rk

m

∏
i=1

f (y;θθθ i)
kidy

(GH)

≤
m

∏
i=1

(∫
Rk

f (y;θθθ i)
qidy

)1/pi

(A.7)

(1.6)
= exp

(
m

∑
i=1

(
1−qi

pi

)
Rqi[Y;θθθ i]

)
, (A.8)

with qi = piki, pi > 1, ki ∈ A , and ∑
m
i=1(1/pi) = 1, i = 1, . . . ,m. Then, the last term

of (A.8) can be upper bounded using Chebyshev’s inequality for sums (see formula
11.115 of Gradshteyn and Ryzhik, 2007) as

m

∑
i=1

(
1−qi

pi

)
Rqi[Y;θθθ i] ≤ 1

m

(
m

∑
i=1

1−qi

pi

)(
m

∑
i=1

Rqi[Y;θθθ i]

)

=
1−α

m

m

∑
i=1

Rqi[Y;θθθ i]

≤ 1−α

m

m

∑
i=1

Rki[Y;θθθ i]. (A.9)

In (A.9), the property Rqi[Y;θθθ i]≤ Rki[Y;θθθ i], given that qi > ki, i = 1, . . . ,m, is used.
Finally, the result is straightforward from (A.8) and (A.9).

(ii) By choosing pi = α/ki, we have that ∑
m
i=1(1/pi) = ∑

m
i=1(ki/α) = 1 and ki < α . This

implies that 1 < α/ki = pi. Then, we obtain from the inequality (A.7):

m

∏
i=1

(∫
Rk

f (y;θθθ i)
qidy

)1/pi

=
m

∏
i=1

Pqi[Y;θθθ i]
1/pi

≤

(
m

∏
i=1

Pki[Y;θθθ i]
ki

)1/α
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(AG)

≤

(
1
m

m

∑
i=1

Pki[Y;θθθ i]
ki

)m/α

, (A.10)

where in (A.10), the Arithmetic-geometric (AG) inequality (see formula 11.116 of
Gradshteyn and Ryzhik, 2007) was applied. Applying (A.10) in (A.7), the result is
obtained. �

Proof of Lemma 10:

(i) See e.g. Kim and Mallick (2003).

(ii) It is straightforward from the representation (2.14) (see Theorem 2.(a)-(b) of (Kim and
Mallick, 2003) for details).

(iii) The computation of the quadratic form comes from parts (i), (ii) and the fact

E[zzz⊤Azzz] = K2(ZZZ)tr(AΩ)+ξ
⊤Aξ +2K1(ZZZ)ξ

⊤Aδ

(see Theorem 3.(a) of (Kim and Mallick, 2003)). For a proof of Property (iii), see
Azzalini and Capitanio (2003) and Contreras-Reyes and Arellano-Valle (2012). �

Proof of Lemma 11: By (2.13) we have for the logarithm of the pdf of Y ∼ SNk(ξ 2,Ω2,η2)

that

log fY(x) = log{Bk(ν2)}−
1
2

log |Ω2|−
(

ν2 + k
2

)
log
(

1+
Q2

ν2

)
+ log

{
2T

(√
ν2 + k

ν2 +Q2
η
⊤
2 (x−ξ 2);ν2 + k

)}
.

On the another hand, by the Taylor expansion series of g(x) = log(1+ x) around zero, x > 0,
we have

log(1+ x) =
∞

∑
k=1

g(k)(0)
xk

k!
,

where g(k)(0) is the k-derivative of g(x) around zero. Now is possible to obtain the following
approximation for the calculus of the expected value of 1+Q2/ν2 with respect to the pdf
fX(x)

log
(

1+
u
n

)
=

u
n
+O(n−2), (A.11)
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for any u > −n, and replacing x = u/n when n → ∞, i.e., x → 0. This mean that exist a
constant α > 0 such that | log(1+u/n)−u/n| ≤ α/n2. This yields

E
[

log
(

1+
Q2

ν2

)]
≈ E[Q2]

ν2
,

as ν2 → ∞. Thus, since by (1.12), CH(X,Y) = −E[log fY(X)], by applying (2.15) and
Lemma 10(ii) with ZZZ replaced by X and a = ξ 2 the proof follows. �

Proof of Proposition 11. By (2.20), φk(y; µ,Ω) = |Ω|−1/2φk

(
Ω

−1/2(y−µ)
)

, where φk(zzz)
is the probability density function of Nk(0, Ik). Then, as in (5), to compute the integral∫
Rk [ f (zzz)]αdzzz we use the change of variables Ωα = α−1Ω and ZZZ0 = Ω

−1/2
α (ZZZ −µ). In this

case, ZZZ0 ∼ ESNk(0, Ik, η̃ ,τ) with η̃ = Ω
1/2
α η . We shall use the fact that |Ωα |= α−k|Ω| for

k-dimensional matrices (Nock and Nielsen, 2012). Then, according to Lemma 3, the integral∫
Rk [ f (zzz)]αdzzz should be rewritten in terms of an expected value with respect to a standardized

normal density as∫
Rk
[ f (zzz)]αdzzz =

1
[Φ1(τ)]α

|Ω|−
α

2 |Ωα |1/2(2π)(1−α) k
2 E{[Φ1(η̃

⊤zzz0 + τ̃)]α}

=
1

[Φ1(τ)]α
α
−k(2π)(1−α)k/2|Ω|(1−α)/2E{[Φ1(W )]α}.

where W = η̃
⊤ZZZ0+ τ̃ ∼ESN1(τ̃,∥η̃∥2,∥η̃∥,τ) with ∥η̃∥= η̃

⊤
η̃ (Arellano-Valle et al., 2013,

Contreras-Reyes and Arellano-Valle, 2012), i.e., the expected value E{[Φ1(η̃
⊤zzz0 + τ̃)]α} is

reduced from k dimensions to one dimension (Arellano-Valle et al., 2013, Contreras-Reyes,
2014). �

Proof of Corollary 6.

(i) From Proposition 11, we obtain directly

Rα(ZZZ) =
1

1−α
{log[ψα,k(Ω)]−αlog[2Φ1(τ)]+ log[E{[Φ1(W )]α}]},

= Rα(ZZZN)+
α

1−α
log
[

1
Φ1(τ)

]
+

1
1−α

log[E{[Φ1(W )]α}].

(ii) Considering Jensen’s inequality, we obtain E{[Φ1(W )]α} ≥ [Φ1(E[W ])]α . Then, (ii)
is straightforward from (2.21).
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(iii) By (1.6), it follows that

H(ZZZ) =−E

{
log

[
φk(ZZZ0)

Φ1(η̃
⊤ZZZ0 + τ̃)

Φ1(τ)

]}
= H(ZZZ0)−E

{
log
[

Φ1(W )

Φ1(τ)

]}
,

where, ZZZ0 =Ω
−1/2(ZZZ−µ)∼ESNk(0, Ik, η̃ ,τ) and W = η̃

⊤ZZZ0+ τ̃ ∼ESN1(τ̃,∥η̃∥2,∥η̃∥,τ).

(iv) Right side: by Cover and Thomas (2006), for any density g(x) of a random vec-
tor x ∈ Rk (not necessary normal) with zero mean and variance Ω = E[XX⊤], the
Shannon entropy of X is maximized under normality as H(X)≤ (1/2)log[(2πe)k|Ω|].
Then, the result is obtained from (2.22). Left side: as in (iii), by choosing β (u) =
Φ1(η

⊤Ω
−1/2(u−µ)+ τ̃)/Φ1(τ) in the nonsymmetrical entropy (A.1), it follows that

E{logβ (ZZZN)}= Φ1

(
τ̃√

1+∥η∥

)
− log[Φ1(τ)]

(see Proposition 4 of Azzalini and Dalla-Valle, 1996). Then, as E{log[β (ZZZ)]} ≤
E{log[β (ZZZN)]}/Φ1(τ), the result is obtained.

(v) Follows from properties (i), (iii) and (1.6). �

Proof of Proposition 13. By (2.28), it follows that

∫ b

a
[g(w)]αdw =

1
([F(z)]ba)α

∫ b

a
[ f (w)]αdw

and, by Proposition 5, the integral
∫ b

a [ f (w)]
αdw should be rewritten in terms of an expected

value as ∫ b

a
[ f (w)]αdw = ψα,1(σ

2)E{[Φ1(u)]α |a0 < u ≤ b0},

where U ∼ SN1(0, η̃2, η̃), η̃2 = ωη2/α , a0 = η(a− µ)/ω and b0 = η(b− µ)/ω . Again,
by Lemma 2 and setting µ = 0, J = η̃2, r = α , d = s = A = h(u) = 1; we obtain Ã = Iα+1,
D̃ = (1α , η̃)⊤ and Ω̃ = Iα+1 + η̃2D̃⊤D̃. Then, the expected value is

E{[Φ1(u)]α |a0 < u ≤ b0} = 2Φα+1(0;0,Ω̃)[H(v)]b0
a0
,

where H(v) is the cumulative density function of a closed skew-normal variable V ∼
CSN1,2(0, η̃2, B̃,0, I2) with B̃ = (1, η̃)⊤ (see Proposition 3 of Flecher et al., 2010). �



Appendix B

#############################################################
### The following measures can be computed using
### skewtools (0.1.2) package of Contreras-Reyes (2012):
### 1. Shannon entropy for multivariate and univariate SN & ST,
### 2. Mutual information for multivariate and univariate SN & ST,
### 3. KL divergence for multivariate and univariate SN.

### For other measures, we presented the main R codes:

########### SECTION 4.1.2 ##############

###### Univariate SN Renyi entropy ######

Renyi.entropy <- function(alpha, xi, sigma2, lambda){
Re.normal = 0.5*log(sigma2*2*pi) + 0.5*log(alpha)/(alpha-1)
eta.tilde = sqrt(sigma2)*lambda
eta.norm = eta.tilde^2
D.tilde = c(rep(1,alpha),eta.norm)
Omega.tilde = diag(alpha+1) + eta.norm^2*(D.tilde%*%t(D.tilde))
omega = 1 + eta.norm^4

normL1 = pmnorm(rep(0, alpha+1), mean = rep(0, alpha+1),
varcov = Omega.tilde)[1]

normL2 = pnorm(0, 0, sqrt(omega))
normL = normL1 / normL2
Neg = log((2^alpha)*normL)/(alpha-1)
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Re.normal - Neg
}

###### Multivariate SN Renyi entropy ######

library(mnormt)

MRenyi.entropy <- function(alpha, xi, sigma2, lambda){
d = dim(sigma2)[1]
Re.normal = 0.5*log(det(sigma2)*(2*pi)^d) + 0.5*log(alpha)/(alpha-1)

eta.norm = as.numeric(t(lambda) %*% sigma2 %*% lambda)
D.tilde = c(rep(1,alpha), eta.norm)
Omega.tilde = diag(alpha+1) + eta.norm^2*(D.tilde%*%t(D.tilde))
omega = 1 + eta.norm^4

normL1 = pmnorm(rep(0, alpha+1), mean = rep(0, alpha+1),
varcov = Omega.tilde)[1]

normL2 = pnorm(0, 0, sqrt(omega))
normL = normL1 / normL2

Neg = log((2^alpha)*normL)/(alpha-1)

Re.normal - Neg
}

########### SECTION 4.1.3 ##############

###### Asymptotic ST KL divergence ######

library(skewtools)
library(sn)

## st density
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theta1 = c(0,1,2,5) # Example
theta2 = c(0,2,3,4)

## Numerical

dst1 <- function(x, location, scale, shape, df){
z <- (x - location)/scale
pdf <- dt(z, df = df)
cdf <- pt(shape * z * sqrt((df + 1)/(z^2 + df)), df = df + 1)
2 * pdf * cdf/scale
}

CE.st.I <- function(x){ # Cross-entropy of ST
fx <- dst1(x, location=theta1[1], scale=theta1[2],

shape=theta1[3], df=theta1[4])
fy <- dst1(x, location=theta2[1], scale=theta2[2],

shape=theta2[3], df=theta2[4])
-fx*log(fy)
}

integrate(CE.st.I, lower=-Inf, upper=Inf, subdivisions=100)$value

## Asymptotic

k = 1
K_m <- function(m,nu) (nu/2)^(m/2)*gamma((nu-m)/2)/gamma(nu/2)
Bk_nu <- gamma((theta2[4]+k)/2) / (gamma(theta2[4]/2)*(theta2[4]*pi)^(k/2))

delta <- theta1[2]*theta1[3] / sqrt(1+theta1[2]*theta1[3]^2)
EQ <- K_m(2,theta1[4])*theta1[2]/theta2[2] +

(theta1[1]-theta2[1])^2/theta2[2] +
2*K_m(1,theta1[4])*(theta1[1]-theta2[1])*delta/theta2[2]

A <- (theta2[4]+k)*EQ /(2*theta2[4])

Elog <- function(x) {
Q = (x-theta2[1]) / theta2[2]
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eta2 = theta2[3]* sqrt((theta2[4]+k)/(theta2[4]+Q^2))
fx <- dst1(x, location=theta1[1], scale=theta1[2],

shape=theta1[3], df=theta1[4])
log(2*pt(eta2*(x-theta2[1]), df=theta2[4]+k))*fx
}

EV = integrate(Elog, lower=-Inf, upper=Inf, subdivisions=100)$value
-log(Bk_nu) + 0.5*log(theta2[2]) + A - EV

##### Gamma function

B.aprox <- function(nu,k) (2*pi)^(-k/2)
B <- function(nu,k) gamma((nu+k)/2)/(gamma(nu/2)*(nu*pi)^(k/2))

##### T-Student

DKL.T <- function(theta1, theta2){
A1=0.5*log(theta2[1]/1)
A2=0.5*((theta2[2]+1)/theta2[2])*(theta1[2]/(theta1[2]-2))*

(theta1[1]/theta2[1])
A3=0.5*(theta1[2]+1)*(digamma(0.5*(theta1[2]+1))-digamma(0.5*theta1[2]))
A1 + A2 - A3
}

########### SECTION 4.1.4 ##############

###### JS SN divergence ######

JS.sn <- function(eta1, eta2){

eta1 = abs(eta1); eta2 = abs(eta2)

Emint <- function(a) {
f1 <- function(x) 2*dnorm(x)*pnorm(a*x)*log(2*pnorm(a*x))
try(2*integrate(f1, lower=0, upper=Inf, subdivisions=100)$value, TRUE)
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}

Emint2 <- function(a,b) {
f2 <- function(x) 2*dnorm(x)*pnorm(a*x)*log(pnorm(a*x)+pnorm(b*x))
try(2*integrate(f2, lower=0, upper=Inf, subdivisions=100)$value, TRUE)
}

JS = 0.5*(Emint(eta1) - Emint2(eta1,eta2) + Emint(eta2) - Emint2(eta2,eta1))
JS = as.numeric(JS)
return(JS)
}

########## SECTION 4.2 ############

####### Multivariate FMSN Shannon entropy bounds ###

Us.entropy <- function(model){

Emint <- function(a) {
f1 <- function(x) 2 * pnorm(a * x) * log(2 * pnorm(a * x)) * dnorm(x)
2*integrate(f1, 0, 100, subdivisions = 100)$value

}

Emint2 <- function(a,b) {
f1 <- function(x) 2 * pnorm(a * x) * log(2 * pnorm(a * x)) * dnorm(x)
f2 <- function(x) 2 * pnorm(b * x) * log(2 * pnorm(b * x)) * dnorm(x)
f <- function(x) f1(x)*f2(x)
2*integrate(f, 0, 100, subdivisions = 100)$value

}

P = model$pii
m = length(P)

Alower <- Bupper <- Blower <- rep(0, m)
VY = 0
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for(i in 1:m){
Xi = model$mu[[i]]
Omega = model$sigma2[[i]]
Eta = model$shape[[i]]
Delta <- as.numeric(sqrt(1 + Omega*Eta^2)^(-1)) * Omega*Eta
N.Eta = as.numeric(sqrt(Omega*Eta^2))

EY <- P[i]*(Xi + sqrt(2/pi)*Delta)
Mu <- Xi + sqrt(2/pi)*Delta - EY
VY <- VY + P[i]*(Omega - (2/pi)*(Delta^2) + Mu^2)

Alower[i] = P[i]*Emint(N.Eta)
Bupper[i] = P[i]*log(P[i])

Blower.aux <- rep(0, m)

for(s in 1:m) {
Omega.aux = model$sigma2[[s]]
Eta.aux = model$shape[[s]]
N.Eta2 = as.numeric(sqrt(Omega.aux * Eta^2))
Blower.aux[s] = P[s]*Emint2(N.Eta, N.Eta2)
}

Blower[i] = P[i]*log(sum(Blower.aux))
}

Aupper.new = 0.5*log(VY*2*pi*exp(1))
Alower.new = Aupper.new - sum(Alower)
Bupper.new = Alower.new - sum(Bupper)
Blower.new = -sum(Blower)

return(list(Aupper = Aupper.new, Alower = Alower.new,
Bupper = Bupper.new, Blower = Blower.new))

}

####### Multivariate FMSN Renyi entropy bounds ###
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Ur.entropy <- function(alpha, model){

p = model$pii
xi = model$mu
sigma2 = model$sigma2
lambda = model$shape

delta = sigma2*lambda / sqrt(1 + lambda^2*sigma2)
EY = sum(p*(xi + sqrt(2/pi)*delta))
mu = xi + sqrt(2/pi)*delta - EY
varY = sum(p*(sigma2 - (2/pi)*delta^2 + mu^2))
b = 3*alpha - 1
F = 0.5*log(pi*b/(alpha-1)) + log(b/log(2*alpha))/(alpha-1)

+ log(gamma(alpha/(alpha-1))) - log(gamma(b/(2*(alpha-1))))
RE.up = 0.5*log(varY) + F

m = length(p)
RE.low = exp((1-alpha) * Renyi.entropy(alpha, xi[m], sigma2[m], lambda[m]))

for(i in 1:(m-1)){
pi.new = sum(p[1:i])^alpha
RE.low = RE.low +
pi.new * (exp((1-alpha) * Renyi.entropy(alpha, xi[i], sigma2[i], lambda[i]))
- exp((1-alpha) * Renyi.entropy(alpha, xi[i+1], sigma2[i+1], lambda[i+1])))
}

RE.low = log(RE.low)/(1 - alpha)

return(list(RE.up = RE.up, RE.low = RE.low))
}

############## SECTION 4.3 ##############

####### SN (Skew-Normal) FUNCTIONS #####



150

#### Moments for Normal distribution (Henze, 1986)

momN <- function(m){
K=0
x=length(which(m %% 2 != 0))
if(x==0) K=factorial(m)/((2^(m/2))*factorial(m/2))
K
}

#### Coefficients a_k(m) for SN moments (Martinez et al., 2008)

coef.SN <- function(t){
if(t==1) A <- matrix(1,1,1)
if(t > 1){
A <- matrix(NA,t,t)
A[1,1] = 1
for(k in 2:t){
A[k,1] = (2*k-1)*A[k-1,1]
for(m in 2:k) A[k,m] = 2*(k-1)*(A[k-1,m] + A[k-1,m-1])
A[k,k] = 2*(k-1)*A[k-1,k-1]
}
}
return(A)
}

#### Moments for SN distribution:

momSN <- function(tau, m, method=1){
# method=1: Martinez et al.
# method=2: Henze
# method=3: Numerical integration
is.even <- function(x) x %% 2 == 0
is.odd <- function(x) x %% 2 != 0
if(is.even(m)) mu = factorial(m)/((2^(m/2))*factorial(m/2))
if(is.odd(m)) {
b = sqrt(2/pi)
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k = (m+1)/2
if(method==1){
A = coef.SN(m)
mu = 0
for(i in 1:k) mu = mu + A[k,i]*tau^(2*i-1)
mu = mu*b*(1+tau^2)^(-m/2)
}
if(method==2){
mu = 0
for(i in 0:(k-1)){
mu = mu + factorial(i)*(2*tau)^(2*i)/(factorial(2*i+1)*factorial(k-i-1))
}
mu = mu*b*tau*factorial(2*k-1)*(1+tau^2)^(-m/2)/2^(k-1)
}
if(method==3){
sn.mod <- function(u, tau, k){
u^k*dnorm(u)*pnorm(tau*u)
}
mu = 2*integrate(sn.mod, lower=-Inf, upper=Inf, tau=tau, k=k)$value
}
}
mu
}

#### Cumulant function:

KP <- function(m){
K=rep(0,m)
for(i in 1:m){
if(i<=4) K[i]=zeta(i,0) # require ’sn’ library
if(i>=5){
K[i]=(i-2)*K[i-2]
x=length(which(i %% 2 != 0))
if(x==0){ # i is even
for(p in 1:(0.5*i)){
if(K[p]==K[i-p]) aux=choose(i-2,p-1)*K[p]*K[i-p]
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if(K[p]!=K[i-p]) aux=2*choose(i-2,p-1)*K[p]*K[i-p]
K[i]=K[i]+aux
}
}
if(x==1){ # i is odd
for(p in 1:(0.5*(i-1))) K[i]=K[i]+2*choose(i-2,p-1)*K[p]*K[i-p]
}
K[i]=-K[i]
}
}
round(K,6)
}

#### SN negentropy:

neg.SN <- function(tau, t){
b = sqrt(2/pi)
delta.tau = tau/sqrt(1+tau^2)
Exp.SN = 0
for(i in 1:t) Exp.SN = Exp.SN + KP(i)[i]*momSN(tau,i)*(tau^i)/factorial(i)
N = 0.5*log(1-(b*delta.tau)^2) + Exp.SN
H = 0.5*log(2*pi*exp(1)) - Exp.SN
list(Entropy=H, Negentropy=N, K=Exp.SN)
}

####### MSN (Modified Skew-Normal) FUNCTIONS #####

### Integral xi_k(tau) for odd MSN moments:

xi <- function(k, tau){
b = sqrt(2/pi)
msn.mod <- function(x, tau, k) {
exp(-x/2)*pnorm(tau*sqrt(x)/sqrt(1+x))*x^k/(gamma(k+1)*2^(k+1))
}
xi0 = integrate(msn.mod, lower=0, upper=Inf, tau=tau, k=k)
xi0$value
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}

### MSN moments of Z_tau:

momMSN <- function(tau,k){
b = sqrt(2/pi)
is.even <- function(x) x %% 2 == 0
is.odd <- function(x) x %% 2 != 0
if(is.even(k)) mu = momN(k)
if(is.odd(k)) mu = b*factorial(k-1)*2^(k-1)*(2*xi(k,tau) - 1)
mu
}

### MSN moments of Z^{*}_tau for U:

momMSN1 <- function(tau,k){
msn.mod <- function(u, tau, k){
u^k*(1-u^2)^(-3/2)*dnorm(u/sqrt(1-u^2))*pnorm(tau*u)
}
mu = 2*integrate(msn.mod, lower=-1, upper=1, tau=tau, k=k)$value
mu
}

#### MSN negentropy:

neg.MSN <- function(tau, t){
b = sqrt(2/pi)
Exp.MSN = 0
for(i in 1:t) {
Exp.MSN = Exp.MSN + KP(i)[i]*momMSN1(tau,i)*(tau^i)/factorial(i)
}
xi0 = xi(0, tau)
N = 0.5*log(1-momMSN(tau,1)^2) + Exp.MSN
H = 0.5*log(2*pi*exp(1)) - Exp.MSN
list(Entropy=H, Negentropy=N, K=Exp.MSN)
}
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