Líneas de Investigación

Modelos estadísticos

Los modelos estadísticos forman un conjunto de herramientas que permiten estudiar relaciones entre variables aleatorias. Las formas más simples de esas relaciones son lineales, y por muchos años la clase de los modelos lineales ha sido utilizada para describir tales relaciones.

Sin embargo, la necesidad de estudiar fenómenos más complejos y el creciente avance computacional, ha generado el desarrollo de nuevos modelos estadísticos que dan más flexibilidad a la relación funcional entre las variables involucradas. Es así como nace, por ejemplo, la clase de los modelos lineales generalizados que incluye los principales modelos estadísticos, tales como: modelos lineales clásicos, modelos de Poisson, modelos con respuesta Gama, modelos Logísticos, modelos con respuesta Binomial negativa, modelos mixtos generalizados, entre otros.

La flexibilidad y aplicabilidad de esta clase de modelos en distintas áreas de investigación le ha permitido posicionarse como una herramienta fundamental en todo proceso de modelación.

Procesos estocásticos

En el estudio de las variables aleatorias realizado hasta ahora se han explorado las características aleatorias del fenómeno, pero se ha mantenido una premisa por defecto, que esas características aleatorias permanecen constantes a través del tiempo. La teoría de los procesos estocásticos se centra en el estudio y modelización de sistemas que evolucionan a lo largo del tiempo, y/o del espacio, de acuerdo a unas leyes no determinísticas, esto es, de carácter aleatorio. La forma habitual de describir la evolución del sistema es mediante sucesiones o colecciones de variables aleatorias. De esta manera, se puede estudiar cómo evoluciona una variable aleatoria a lo largo del tiempo y/o del espacio.